Browse Source

Update textbook.fr.md

keep-around/7b3785231622ed3ef9696a0557ad1cd90a3cc1b0
Claude Meny 5 years ago
parent
commit
7b37852316
  1. 12
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/40.classical-mechanics/10.main/textbook.fr.md

12
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/40.classical-mechanics/10.main/textbook.fr.md

@ -263,25 +263,24 @@ par rapport à $`\mathcal{R}`$ :
Soit $`\mathcal{R}=(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z},t)`$ un référentiel Galiléen.
Soit $`M`$ un point quelconque de l'espace, de coordonnées cartésiennes $`(x,y,z)`$ dans $`\mathcal{R}`$ :
$`\overrightarrow{OM}(t)=x(t)\;\overrightarrow{e_x} + y(t)\;\overrightarrow{e_x} + z(t)\;\overrightarrow{e_x}`$
$`\mathbf{\overrightarrow{OM}(t)=x(t)\;\overrightarrow{e_x} + y(t)\;\overrightarrow{e_x} + z(t)\;\overrightarrow{e_x}}`$
Soit $`\mathcal{R}'=(O', \overrightarrow{e_x'},\overrightarrow{e_y'},\overrightarrow{e_z'},t')`$
un référentiel en mouvement de translation rectiligne uniforme de vitesse
$`\overrightarrow{V}`$ par rapport à $`\mathcal{R}`$ :
$`\overrightarrow{V}_{\mathcal{R}'/\mathcal{R}} = \overrightarrow{V} = -\overrightarrow{V}_{\mathcal{R}/\mathcal{R}'}`$
$`\mathbf{\overrightarrow{V}_{\mathcal{R}'/\mathcal{R}} = \overrightarrow{V} = -\overrightarrow{V}_{\mathcal{R}/\mathcal{R}'}}`$
Choisissons pour $`\mathcal{R}`$ et $`\mathcal{R}'`$ :
\- une même unité de temps,
\- une même date origine des temps,
alors, le temps étant absolu en physique newtonienne, nous avons $`t'=t`$.
alors, le temps étant absolu en physique newtonienne, nous avons $`\mathbf{t'=t}`$.
Choisissons le repère cartésien fixe $`(O',\overrightarrow{e_x '},\overrightarrow{e_y '},\overrightarrow{e_z '},t')`$ de $`\mathcal{R}`$
tel que :
\_ les points origines $`O`$ et $`O'`$ soient confondus à l'origine des temps
\- une même unité de mesure des longueurs pour $`\mathcal{R}`$ et $`\mathcal{R}'`$
\- les vecteurs de base $`(\overrightarrow{e_x '},\overrightarrow{e_y '},\overrightarrow{e_z})`$ tels que
$`\overrightarrow{e_x'}=\overrightarrow{e_x}\;\;,\;\;\overrightarrow{e_y'}=\overrightarrow{e_y}\;\;,\;\;\overrightarrow{e_z'}=\overrightarrow{e_z}`$.
$`\mathbf{\overrightarrow{e_x'}=\overrightarrow{e_x}\;\;,\;\;\overrightarrow{e_y'}=\overrightarrow{e_y}\;\;,\;\;\overrightarrow{e_z'}=\overrightarrow{e_z}}`$.
La transformation de Galilée est la loi de transformation des coordonnées de tout point $`M`$ entre $`\mathcal{R}$ et $`\mathcal{R}`$ :
@ -325,8 +324,9 @@ v_z'=v_z-V_z \\
}`$
$`\mathbf{\overrightarrow{v}_{M / \mathcal{R'}} = \overrightarrow{v}_{M / \mathcal{R}}-\overrightarrow{v}_{\mathcal{R'} / \mathcal{R}}}`$
$`\overrightarrow{v}_{M / \mathcal{R'}} = \overrightarrow{v}_{M / \mathcal{R}}-\overrightarrow{v}_{\mathcal{R'} / \mathcal{R}}`$
$`\mathbf{\overrightarrow{v}_{M / \mathcal{R'}} = \overrightarrow{v}_{M / \mathcal{R}}+\overrightarrow{v}_{\mathcal{R} / \mathcal{R'}}}`$

Loading…
Cancel
Save