1 changed files with 166 additions and 0 deletions
@ -0,0 +1,166 @@ |
|||||
|
|
||||
|
ES : coordenada de un vector <br> |
||||
|
FR : cordonnée d'un vecteur <br> |
||||
|
EN : coordinate of a vector |
||||
|
|
||||
|
---------------- |
||||
|
|
||||
|
$`\overrightarrow{U} \cdot \overrightarrow{V}`$ <br> |
||||
|
ES : producto escalar <br> |
||||
|
FR : produit scalaire <br> |
||||
|
EN : scalar product (= dot product) |
||||
|
|
||||
|
--------------------- |
||||
|
|
||||
|
ES : orientación del espacio, triedro directo, triedro inverso <br> |
||||
|
FR : orientation de l'espace, trièdre direct, trièdre inverse (ou rétrograde ou indirect ) <br> |
||||
|
EN : space orientation, right-handed trihedron, left-handed trihedron |
||||
|
|
||||
|
------------------------ |
||||
|
|
||||
|
$`\overrightarrow{U} \times \overrightarrow{V}`$ <br> |
||||
|
ES : producto vectorial (= producto externo) <br> |
||||
|
FR : produit vectoriel (=produit extérieur) , |
||||
|
$`U \land V`$ est déconseillé... <br> |
||||
|
EN : vector product |
||||
|
|
||||
|
------------------------ |
||||
|
|
||||
|
ES : contorno cerrado orientado <br> |
||||
|
FR : contour fermé, courbe fermée orientée <br> |
||||
|
EN : closed path, oriented closed curve |
||||
|
|
||||
|
--------------------------- |
||||
|
|
||||
|
ES : superficie cerrada <br> |
||||
|
FR : surface fermée <br> |
||||
|
EN : closed surface |
||||
|
|
||||
|
-------------------------- |
||||
|
|
||||
|
$`\displaystyle\oiint \overrightarrow{V} \cdot \overrightarrow{dS}`$ , or $`\displaystyle\iint \overrightarrow{V} \cdot \overrightarrow{dS}`$ <br> |
||||
|
ES : flujo de un vector <br> |
||||
|
FR : flux d'un vecteur <br> |
||||
|
EN : flux of a vector |
||||
|
|
||||
|
----------------------- |
||||
|
|
||||
|
$`\displaystyle\oint \overrightarrow{V} \cdot \overrightarrow{dr}`$ , or $`\displaystyle\int \overrightarrow{V} \cdot \overrightarrow{dr}`$ <br> |
||||
|
ES : circulación de un vector <br> |
||||
|
FR : circulation d'un vecteur <br> |
||||
|
EN : circulation of a vector |
||||
|
|
||||
|
------------------------- |
||||
|
|
||||
|
$`dA = dx \, dy`$ <br> |
||||
|
ES : elemento escalar de superficie <br> |
||||
|
FR : élément scalaire de surface (= surface élémentaire, surface infinitésimale) <br> |
||||
|
EN : scalar surface element |
||||
|
|
||||
|
------------------------- |
||||
|
|
||||
|
$`\overrightarrow{dA} = \overrightarrow{e_n}\;dA = \overrightarrow{n}\;dA `$ <br> |
||||
|
ES : elemento vectorial de superficie <br> |
||||
|
FR : élément vectoriel de surface <br> |
||||
|
EN : vector surface element |
||||
|
|
||||
|
-------------------------- |
||||
|
|
||||
|
ES : vector axial / vector polar <br> |
||||
|
FR : vecteur axial (= pseudo vecteur) / vecteur polaire (= vecteur vrai) <br> |
||||
|
EN : axial vector (= space-oriented vector) / polar vector |
||||
|
|
||||
|
------------------------- |
||||
|
|
||||
|
ES : sistema de coordenadas cartesianas <br> |
||||
|
FR : système de coordonnées cartésiennes <br> |
||||
|
EN : Cartesian coordinate system |
||||
|
|
||||
|
-------------------------- |
||||
|
|
||||
|
$`\nabla =\vec{e_x}\,\dfrac{\partial}{\partial x} + \vec{e_y}\,\dfrac{\partial}{\partial y} |
||||
|
+\vec{e_z}\,\dfrac{\partial}{\partial z}`$ |
||||
|
, or |
||||
|
$`\nabla = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_y}\,\dfrac{\partial}{\partial y} |
||||
|
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z}`$ |
||||
|
, or more |
||||
|
$`\overrightarrow{\nabla} = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_y}\,\dfrac{\partial}{\partial y} |
||||
|
+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z} `$ <br> |
||||
|
ES : operador nabla <br> |
||||
|
FR : opérateur nabla <br> |
||||
|
EN : nabla operator |
||||
|
|
||||
|
------------------------ |
||||
|
|
||||
|
$`\overrightarrow{grad} f = \nabla f`$, $`\overrightarrow{\nabla}f`$ better, no? <br> |
||||
|
ES : gradiente <br> |
||||
|
FR : gradient <br> |
||||
|
EN : gradient |
||||
|
|
||||
|
-------------------------- |
||||
|
|
||||
|
$`div\;\overrightarrow{U}= \nabla \cdot \overrightarrow{U}`$ , $`div\;\overrightarrow{U}= \overrightarrow{\nabla} \cdot \overrightarrow{U}`$ <br> |
||||
|
ES : divergencia <br> |
||||
|
FR : divergence <br> |
||||
|
EN : divergence <br> |
||||
|
$`div\;\overrightarrow{U}=\lim_{V\leftrightarrow0}\;\dfrac{1}{V}\;\displaystyle\oiint_{S\leftrightarrow V}\overrightarrow{U}\cdot\overrightarrow{dS}`$ |
||||
|
|
||||
|
------------------- |
||||
|
|
||||
|
$`rot\,\overrightarrow{U}`$, but $`\overrightarrow{rot}\,\overrightarrow{U}`$ better, no? <br> |
||||
|
in some English texts : $`curl\times\overrightarrow{U}`$ <br> |
||||
|
$`\overrightarrow{\nabla}\times\overrightarrow{U}`$ or $`\overrightarrow{\nabla}\land\overrightarrow{U}`$ <br> |
||||
|
ES : rotacional de un vector <br> |
||||
|
FR : rotationnel d'un vecteur <br> |
||||
|
EN : rotation of a vector (= curl of a vector ) |
||||
|
|
||||
|
------------------------ |
||||
|
|
||||
|
$`\Delta f = div\;\overrightarrow{grad}\,f `$, $`\Delta\,f = \overrightarrow{\nabla}\cdot\overrightarrow{\nabla}f `$ <br> |
||||
|
ES : operador laplaciana escalar, laplaciana escalar, laplaciana de un campo escalar <br> |
||||
|
FR : opérateur laplacien scalaire, laplacien scalaire, laplacien d'un champ scalaire <br> |
||||
|
EN : laplacian operator, laplacian of a scalar field <br> |
||||
|
ES : en coordenadas cartesianas ortonormalas<br> |
||||
|
FR : en coordonnées cartésiennes orthonormées : <br> |
||||
|
EN : in orthonormal Cartesian coordinate : <br> |
||||
|
$`\Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$ |
||||
|
|
||||
|
-------------------------- |
||||
|
|
||||
|
$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\left( div\,\overrightarrow{U}\right) - \overrightarrow{rot}\left(\overrightarrow{rot}\,\overrightarrow{U}\right)`$ <br> |
||||
|
$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\;div\;\overrightarrow{U} - \overrightarrow{rot}\;\overrightarrow{rot}\;\overrightarrow{U}`$ <br> |
||||
|
ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial <br> |
||||
|
FR : opérateur laplacien, laplacien, d'un champ scalaire ou d'un champ vecoriel <br> |
||||
|
EN : laplacian operator, vectorial laplacian, laplacian of a vector field <br> |
||||
|
in orthonormal Cartesian coordinate : <br> |
||||
|
$`\Delta\;\overrightarrow{U} = \overrightarrow{e_x}\left(\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2}\right) |
||||
|
+\overrightarrow{e_y}\left(\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2}\right) |
||||
|
+\overrightarrow{e_z}\left(\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2}\right)`$ <br> |
||||
|
|
||||
|
$`\Delta\;\overrightarrow{U} = \left | |
||||
|
\begin{array} {r} |
||||
|
\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2} \\[4mm] |
||||
|
\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2} \\[4mm] |
||||
|
\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2} |
||||
|
\end{array} |
||||
|
\right.`$ |
||||
|
|
||||
|
$`\Delta\;\overrightarrow{U} = \left | |
||||
|
\begin{matrix} |
||||
|
\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2} \\[4mm] |
||||
|
\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2} \\[4mm] |
||||
|
\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2} |
||||
|
\end{matrix} |
||||
|
\right.`$ |
||||
|
|
||||
|
--------------------------- |
||||
|
|
||||
|
ES : escalar = número real o complexo + unidad de medida? <br> |
||||
|
FR : scalaire = nombre réel ou complexe + unité de mesure <br> |
||||
|
EN : scalar = real or complex number + measurement unit |
||||
|
|
||||
|
---------------------------- |
||||
|
|
||||
|
ES : magnitud escalar = número real o complexo + unidad de medida? <br> |
||||
|
FR : grandeur scalaire (= grandeur physique scalaire) = nombre réel ou complexe + unité de mesure <br> |
||||
|
EN : scalar quantity = real or complex number + measurement unit |
||||
Write
Preview
Loading…
Cancel
Save
Reference in new issue