1 changed files with 196 additions and 0 deletions
@ -0,0 +1,196 @@ |
|||||
|
--- |
||||
|
title: Cartesian coordinates |
||||
|
published: true |
||||
|
routable: false |
||||
|
visible: false |
||||
|
lessons: |
||||
|
- slug: cartesian-cylindrical-spherical-coordinates |
||||
|
order: 2 |
||||
|
- slug: cartesian-coordinates-linear |
||||
|
order: 2 |
||||
|
--- |
||||
|
|
||||
|
|
||||
|
<!--caligraphie de l'intégrale double curviligne--> |
||||
|
$`\def\oiint{\displaystyle\mathop{{\iint}\mkern-18mu \scriptsize \bigcirc}}`$ |
||||
|
$`\def\Ltau{\Large{\tau}\normalsize}`$ |
||||
|
$`\def\Sopen{\mathscr{S}_{\smile}}`$ |
||||
|
$`\def\Sclosed{\mathscr{S}_{\displaystyle\tiny\bigcirc}}`$ |
||||
|
$`\def\Ssclosed{\mathscr{S}_{\scriptsize\bigcirc}}`$ |
||||
|
$`\def\PSopen{\mathscr{S}_{\smile}}`$ |
||||
|
$`\def\PSclosed{\mathscr{S}_{\displaystyle\tiny\bigcirc}}`$ |
||||
|
|
||||
|
!!!! *LESSON IN CONSTRUCTION :* <br> |
||||
|
!!!! Published but invisible: does not appear in the tree structure of the m3p2.com site. This course is *under construction*, it is *not approved by the pedagogical team* at this stage. <br> |
||||
|
!!!! Working document intended only for the pedagogical team. |
||||
|
|
||||
|
<!--MétaDonnée : INS-1°année_--> |
||||
|
|
||||
|
|
||||
|
#### What are ... ? |
||||
|
|
||||
|
* 3 coordinates |
||||
|
|
||||
|
* |
||||
|
|
||||
|
* **$`\mathbf{\rho}`$** and **$`\mathbf{z}`$** are |
||||
|
|
||||
|
* **$`\mathbf{\varphi}`$** is an *angle* expr... *($`\mathbf{rad}`$)*. |
||||
|
|
||||
|
---- |
||||
|
|
||||
|
 |
||||
|
|
||||
|
----- |
||||
|
|
||||
|
#### What are ... ? |
||||
|
|
||||
|
----- |
||||
|
|
||||
|
 |
||||
|
|
||||
|
----- |
||||
|
|
||||
|
#### How ... ? |
||||
|
|
||||
|
* Method : ... $`\overrightarrow{OM}`$ ... $`Oz`$, ... $`xOy`$ ... $`M_{xOy}`$ |
||||
|
* ... $`Ox`$ et $`Oy`$, *...* ... *sine* y *cosine*. |
||||
|
|
||||
|
---- |
||||
|
|
||||
|
 |
||||
|
|
||||
|
------ |
||||
|
|
||||
|
* $`\Longrightarrow`$ |
||||
|
**$`\quad\mathbf{}\left\{\begin{array}{l} \mathbf{ x=\rho\cdot\cos\varphi} \\\mathbf{ y=\rho\cdot\sin\varphi} \\\mathbf{ z=z} \\ \end{array}\right. `$** |
||||
|
|
||||
|
#### How ... ? |
||||
|
|
||||
|
* ... $`\overrightarrow{e_{\alpha}}`$ ... **...** ... $`M`$ ... *s... $`\alpha`$* ... $`M`$ *... $`d\alpha^+`$*. |
||||
|
|
||||
|
##### Vectors ... $`\overrightarrow{e_{\varphi}}`$ |
||||
|
|
||||
|
--------- |
||||
|
|
||||
|
 |
||||
|
|
||||
|
-------- |
||||
|
|
||||
|
* D... **$`\mathbf{M(\rho,\varphi,z) \longrightarrow M"(\rho,\varphi+\Delta\varphi^+,z)}`$**<br> |
||||
|
(with $`\Delta\varphi^+=\Delta\varphi>0`$)<br> |
||||
|
<br>**$`\Longrightarrow`$ ...** ... **$`\mathbf{\overrightarrow{e_{\varphi}}}`$**<br> |
||||
|
$`\Longrightarrow\overrightarrow{e_{\varphi}}`$ : ... $`M`$ ... $`\rho_M`$ ... $`z_M=const`$, ... $`\varphi`$ .... |
||||
|
|
||||
|
* ... : $`l_{\Delta\varphi}`$<br> |
||||
|
... : $`\overrightarrow{MM''}`$ |
||||
|
|
||||
|
* ... *... : $`\mathbf{l_{\Delta\varphi} \ne\, ||\overrightarrow{MM''}||}`$*. |
||||
|
* ... **infinitesimal : $`\mathbf{dl_{\varphi}=\,||\overrightarrow{MM''}||}`$**. |
||||
|
|
||||
|
* ... ($`d\varphi=d\varphi^+>0`$ o $`d\varphi^-<0`$) :<br> |
||||
|
<br>**$`\mathbf{\overrightarrow{dl_{\varphi}}}`$** *$`\displaystyle=\lim_{\Delta\varphi\rightarrow 0} \overrightarrow{MM''}`$* **$`\mathbf{=\rho_M\cdot d\varphi\cdot\overrightarrow{e_{\varphi}}}`$**<br> |
||||
|
|
||||
|
|
||||
|
|
||||
|
##### Vectors ... $`\overrightarrow{e_{\rho}}`$ y $`\overrightarrow{e_z}`$ |
||||
|
|
||||
|
--------- |
||||
|
|
||||
|
 |
||||
|
|
||||
|
-------- |
||||
|
|
||||
|
* **$`\mathbf{M(\rho,\varphi,z) \longrightarrow M'(\rho+\Delta\rho^+,\varphi,z)}`$**<br> |
||||
|
**$`\mathbf{M(\rho,\varphi,z) \longrightarrow M'''(\rho,\varphi,z+\Delta z^+)}`$** <br> |
||||
|
(con $`\Delta\rho^+=\Delta\rho>0`$ y $`\Delta z^+=\Delta z>0`$)<br> |
||||
|
<br>**$`\Longrightarrow`$ ...** ... <br> |
||||
|
**$`\quad\overrightarrow{e_{\rho}}`$** : ... $`Om_{xOy}`$.<br> |
||||
|
**$`\quad\overrightarrow{e_z}`$** : ... $`Oz`$. |
||||
|
|
||||
|
* ... $`M`$ : ... <br> |
||||
|
$`\Longrightarrow`$ ... = ....<br> |
||||
|
$`\Longrightarrow`$ $`l_{\Delta\rho}=||\overrightarrow{MM'}||\quad`$ et $`\quad l_{\Delta z}=||\overrightarrow{MM'''}||`$ |
||||
|
|
||||
|
|
||||
|
* ... ($`d\rho\;, dz >0\;\text{ou}<0`$) :<br> |
||||
|
**$`\mathbf{\overrightarrow{dl_{\rho}}}`$** $`\displaystyle=\lim_{\Delta\rho\rightarrow 0} \overrightarrow{MM'}`$ **$`\mathbf{ = d\rho \cdot \overrightarrow{e_{\rho}}}`$**.<br> |
||||
|
**$`\mathbf{\overrightarrow{dl_z}}`$** $`\displaystyle=\lim_{\Delta z \rightarrow 0} \overrightarrow{MM'''}`$ |
||||
|
**$`\mathbf{=dz \cdot \overrightarrow{e_z}}`$**. |
||||
|
|
||||
|
#### La base $`(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, \overrightarrow{e_z})`$ esta ortonormada. |
||||
|
|
||||
|
---- |
||||
|
|
||||
|
 |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
* $`(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, \overrightarrow{e_z})`$ ... *... $`M(\rho_M,\varphi_M,z_M)`$*. |
||||
|
|
||||
|
* **$`(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, \overrightarrow{e_z})`$** ... **directa si $`(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})`$** ... **direc...**, y *...*. |
||||
|
|
||||
|
* **$`\left\{ \begin{array}{l}\mathbf{\overrightarrow{e_{\rho}}=\cos\varphi\cdot\overrightarrow{e_x}+\sin\varphi\cdot\overrightarrow{e_y}} \\\mathbf{\overrightarrow{e_{\varphi}}=-\sin\varphi\cdot\overrightarrow{e_x}+\cos\varphi\cdot\overrightarrow{e_y}} \end{array}\right.`$** |
||||
|
|
||||
|
* ... $`(O,\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z},t)`$, .. *... $`(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})`$* :<br> |
||||
|
\- ... **...**.<br> |
||||
|
\- **...** *cuando $`\varphi_M`$ ...*. |
||||
|
|
||||
|
#### How ... $`\overrightarrow{OM}`$ ? |
||||
|
|
||||
|
---- |
||||
|
|
||||
|
 |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
* **$`\mathbf{\overrightarrow{OM}=\rho_M\cdot\overrightarrow{e_{\rho}}+z_M\cdot\overrightarrow{e_z}}`$** |
||||
|
|
||||
|
#### What are ... $`dl`$ and ... $`\overrightarrow{dl}`$ ? |
||||
|
|
||||
|
* A point **$`M(\rho,\varphi,z)`$** ... **...** ... $`M'(\rho+d\rho,\varphi+d\varphi,z+dz)`$, with *$`d\rho`$, $`d\varphi`$ y $`dz`$ ..., ...*, ... $`\rho\;,\;\varphi\;,\;z`$. |
||||
|
|
||||
|
##### Vector ... $`\overrightarrow{dl}`$ |
||||
|
|
||||
|
* vector ... = *...c* [Norme IEC](http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-02) |
||||
|
|
||||
|
* The **vector ...** ... |
||||
|
**$`\overrightarrow{dl}`$** $`\;=dl_{\rho}\cdot\overrightarrow{e_{\rho}}+dl_{\varphi}\cdot\overrightarrow{e_{\varphi}}+dl_z\cdot\overrightarrow{e_z}`$ |
||||
|
**$`\quad=dl_{\rho}\cdot\overrightarrow{e_{\rho}}+\rho\,d\varphi\cdot\overrightarrow{e_{\varphi}}+dl_z\cdot\overrightarrow{e_z}`$** |
||||
|
|
||||
|
* enables to calculate the vectors ... $`\overrightarrow{v}(t)`$ y ... $`\overrightarrow{a}(t)`$ of a point M at each instant t :<br> |
||||
|
**$`\overrightarrow{v}(t)`$**$`\;=\dfrac{\overrightarrow{dOM}}{dt}`$**$`\;=\dfrac{\overrightarrow{dl}}{dt}`$**<br> |
||||
|
**$`\overrightarrow{a}(t)`$**$`\;=\dfrac{\overrightarrow{d^2 OM}}{dt^2}`$**$`\;=\dfrac{d}{dt}\left(\dfrac{\overrightarrow{dl}}{dt}\right)`$** |
||||
|
|
||||
|
##### ... $`dl`$ |
||||
|
|
||||
|
* ... = *...* [Norme IEC](http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-01) |
||||
|
|
||||
|
* ... **... $`dl`$** ... *...* ... $`M`$ y $`M'`$ :<br> |
||||
|
**$`dl`$**$`\;=\sqrt{dl_{\rho}^2+dl_{\varphi}^2+dl_z^2}`$**$`\;=\sqrt{d\rho^2+\rho^2\,d\varphi^2+dz^2}`$** |
||||
|
|
||||
|
* Enables to calculate the length $`\mathscr{l}`$ of a trajectory $`L`$ ... $`\rho(t)`$, $`\varphi(t)`$ y $`z(t)`$ ...s :<br> |
||||
|
**$`\displaystyle\mathbf{\mathscr{l}=\int_L dl}`$** |
||||
|
|
||||
|
#### What is the ... ? |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
<br> |
||||
|
<br> |
||||
|
<br> |
||||
|
<br> |
||||
|
<br> |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
#### What is ... ? |
||||
|
|
||||
|
--- |
||||
|
|
||||
|
<br> |
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
|
|
||||
Write
Preview
Loading…
Cancel
Save
Reference in new issue