Browse Source

Update textbook.en.md

keep-around/91428ba8dbdb41ae7cb34ecd16136cda140c2aec
Claude Meny 6 years ago
parent
commit
91428ba8db
  1. 6
      10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

6
10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

@ -630,7 +630,7 @@ $`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{d
local (magnétostatique)
$`\overrightarrow{rot}\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}`$
$`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}`$
Electromagnétisme dans le vide :
@ -678,11 +678,11 @@ $`\epsilon_0 \cdot \mu_0 \cdot c^2 = 1`$
$`div\overrightarrow{E}=\dfrac{\rho}{\epsilon_0}`$
$`\overrightarrow{rot}\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}`$
$`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}`$
$`div\overrightarrow{B}=0`$
$`\overrightarrow{rot}\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$
$`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$
#### Ecuaciones de Maxwell en forma integral / Equations de maxwell intégrales / ...

Loading…
Cancel
Save