* En coordonnées cartésiennes, cylindriques ou sphérique, **chaque élément de surface fermée $`dS`$** associé à un élément de volume $`d\tau`$ qui n'est pas situé en surface du volume $`\tau`$ se décompose en *6 éléments de surface ouverte $`d\Sigma_{int, i}`$* situés *à l'intérieur* du volume $`\tau`$ : <br>
**$`\mathbf{dS=\sum_{i=1}^6 d\Sigma_{int,i}}`$**
* **A l'intérieur du volume $`\tau`$**, tout élément de surface ouverte $`d\Sigma_{int}`$ appartient à 2 élément de volume $`d\tau_1`$ et $`d\tau_2`$. Selon l'élément de volume considéré, un même élément de surface ouverte intérieure *$`\mathbf{d\Sigma_{int}}`$ est représenté par les vecteurs $`\overrightarrow{\Sigma}_{int,1}`$ ou $`\overrightarrow{\Sigma}_{int,2}`$* qui sont opposés :<br>
* $`\Longrightarrow`$ les flux élémentaires *$`\mathbf{d\Phi_{int,1}=\overrightarrow{X}\cdot \overrightarrow{d\Sigma}_{int,1}}`$* et *$`\mathbf{d\Phi_{int,2}=\overrightarrow{X}\cdot \overrightarrow{d\Sigma}_{int,2}}`$* correspondants <!--du champ $`\overrightarrow{X}`$ à travers un même élément de surface $`d\Sigma_i`$ considéré du point de vue des deux éléments de volume $`d\tau_1`$ et $`d\tau_2`$ auxquels il appartient--> sont opposés : <br>
* $`\Longrightarrow`$ le **flux $`\mathbf{\Phi_{int}}`$** de $`\overrightarrow{X}`$ *à travers l'ensemble des $`\overrightarrow{d\Sigma_i}`$ situés* **à l'intérieur** d'un volume (les $`d\Sigma_i`$ appartenant à la frontière extérieure du volume étant exclus) est **nul** :<br>
* Tout **élément de volume $`d\tau`$ en contact avec l'extérieur***possède un élément de surface $`d\Sigma_{ext}`$*. qui appartient à la frontière entre l'intérieur du volume et l'extérieur.
---

---
* Tout élément de surface $`d\Sigma_{ext}`$ n'appartient qu'à un unique élement de volume $`d\tau`$ du volume $`\tau`$ :<br>
$`\Longrightarrow`$ lui est associé un **unique élément vectoriel de surface $`\overrightarrow{d\Sigma}_{ext}`$***orienté de l'intérieur vers l'extérieur*.
* $`\Longrightarrow`$ le *flux élémentaire correspondant $`d\Phi_{ext}=\overrightarrow{X}\cdot \overrightarrow{d\Sigma}_{ext}`$* <!--du champ $`\overrightarrow{X}`$ à travers un même élément de surface $`d\Sigma_i`$ considéré du seul point de vue de l'élément $`d\tau`$--> est en général non nul : <br>
* L'ensemble des $`d\Sigma_{ext}`$ est la surface fermée $`S`$ délimitant le volume $`\tau`$ :<br>
$`S=\oiint d\Sigma_{ext}`$
* $`\Longrightarrow`$ le **flux $`\mathbf{\Phi_{ext}}`$** de $`\overrightarrow{X}`$ à travers l'ensemble des $`\overrightarrow{d\Sigma_{ext}}`$ est le flux $`\mathbf{\Phi_X}`$ de $`\overrightarrow{X}`$ à travers la surface fermée $`S`$ délimitant le volume $`\tau`$ :<br>
#### Quelle est l'expression du théorème de Gauss local en électrostatique ?
* En électrostatique : $`K=\dfrac{1}{4\pi\,\epsilon_0}`$, où $`\rho`$ est la densité volumique de charge (exprimée en $`C\,m^{-3}`$ dans le système international d'unités)
* *Théorème de Gauss local* : **$`\large\mathbf{div\,\overrightarrow{E}=\dfrac{\rho}{\epsilon_0}}`$**
#### Quelle est l'expression du théorème de Gauss local en gravitation ?
* En gravitation newtonnienne : $`K=-\;G`$ , où $`\rho`$ est la densité volumique de masse (exprimée en $`kg\,m^{-3}`$ dans le système international d'unités)
* *Théorème de Gauss local* : **$`\large\mathbf{div\,\mathcal{\overrightarrow{G}}=-\,4\pi\,G\,\rho}`$**