|
|
|
@ -184,11 +184,11 @@ La même démarche appliquée à la branche opposée CD de centre R me donne |
|
|
|
|
|
|
|
$`\overrightarrow{dl_{AB}}=+dy \cdot \overrightarrow{e_y}`$ |
|
|
|
|
|
|
|
$`\displaystyle \overrightarrow{X_R}= |
|
|
|
\left[X_M+\left.\dfrac{\partial X}{\partial x}\right|_M \cdot |
|
|
|
$`\displaystyle \overrightarrow{X_R}=\left[X_M + |
|
|
|
\left.\dfrac{\partial X}{\partial x}\right|_M \cdot |
|
|
|
\left(+\dfrac{dx}{2}\right)\right] \cdot \overrightarrow{e_x}`$ |
|
|
|
$`+\left[Y_M+\left.\dfrac{\partial Y}{\partial x}\right|_M \cdot |
|
|
|
\left(+\dfrac{dx}{2}\right)\right] \cdot \overrightarrow{e_y}$`` |
|
|
|
\left(+\dfrac{dx}{2}\right)\right] \cdot \overrightarrow{e_y}$` |
|
|
|
$`+\left[Z_M+\left.\dfrac{\partial Z}{\partial x}\right|_M \cdot |
|
|
|
\left(+\dfrac{dx}{2}\right)\right] \cdot \overrightarrow{e_z}`$ |
|
|
|
|
|
|
|
|