#### Comment passer des cylindriques aux cartésiennes ?
* Méthode : *projeter* le vecteurs $`\overrightarrow{OM}`$ sur l'axe $`Oz`$, sur le plan $`xOy`$ au point $`M_{xOy}`$ puis sur chacun des axes $`Ox`$ et $`Oy`$, *en utilisant les fonctions* trigonométriques *sinus* et *cosinus*.
<br>**$`\Longrightarrow`$** **direction et sens** de **$`\mathbf{\overrightarrow{e_{\varphi}}}`$**<br>
<br>
**$`\Longrightarrow`$ direction et sens** de **$`\mathbf{\overrightarrow{e_{\varphi}}}`$**<br>
$`\Longrightarrow\overrightarrow{e_{\varphi}}`$ : vecteur unitaire tangent en $`M`$ au cercle de rayon $`\rho_M`$ dans le plan $`z_M=const`$, orienté dans le sens des $`\varphi`$ croissants.
* $`(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, \overrightarrow{e_z})`$ est la *base associée à un point $`M(\rho_M,\varphi_M,z_M)`$*.
* **$`(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, \overrightarrow{e_z})`$** est orthonormée **directe si $`(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})`$** est orthonormée **directe**, et *inverse dans le cas contraire*.
@ -95,6 +122,12 @@ $`\Longrightarrow`$ $`l_{\Delta\rho}=||\overrightarrow{MM'}||\quad`$ et $`\quad
#### Comment s'exprime le vecteur position $`\overrightarrow{OM}`$ ?
#### Que sont l'élément de longueur $`dl`$ et vecteur déplacement élémentaire $`\overrightarrow{dl}`$ ?
@ -123,8 +156,25 @@ $`\Longrightarrow`$ $`l_{\Delta\rho}=||\overrightarrow{MM'}||\quad`$ et $`\quad
* Permet de calculer la longueur $`\mathscr{l}`$ d'une trajectoire $`L`$, lorsque les coordonnées $`\rho(t)`$, $`\varphi(t)`$ et $`z(t)`$ varient en fonction du temps de façon indépendantes les une des autres :<br>