Browse Source

Update cheatsheet.en.md

keep-around/aaf739cbd9ebe15a614100978d50ff82578595e0
Claude Meny 6 years ago
parent
commit
aaf739cbd9
  1. 8
      01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md

8
01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md

@ -101,16 +101,16 @@ $`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$  
You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1)
then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$.
! *USEFUL 1° :<br>
! *USEFUL 1* :<br>
! The conjunction equation and the transverse magnification equation for a plane mirror
! are obtained by rewriting these two equations for a spherical mirror in the limit when
! $`|\overline{SC}|\longrightarrow\infty`$.
! Then we get for a plane mirror : $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and
! $`\overline{M_T}=+1`$.
! *USEFUL 2° :<br>
! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from
! those of the spherical mirror**, with the following assumptions :<br>
! *USEFUL 2* :<br>
! *You can find* the conjunction and the transverse magnification *equations for a plane mirror directly from
! those of the spherical mirror*, with the following assumptions :<br>
! $`n_{eme}=-n_{inc}`$<br>
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction
! of propagation reverses after reflection on the mirror)<br>

Loading…
Cancel
Save