|
|
|
@ -286,7 +286,11 @@ $`\forall \overrightarrow{V}\in\mathcal{P}\quad\overrightarrow{V}=V_a\cdot\overr |
|
|
|
$`\overrightarrow{U}\cdot\overrightarrow{V}=(U_a\cdot\overrightarrow{a}+U_b\cdot\overrightarrow{b})\cdot (V_a\cdot\overrightarrow{a}+V_b\cdot\overrightarrow{b})`$<br> |
|
|
|
$` = U_a^2\,(\overrightarrow{a}\cdot\overrightarrow{a})+U_a\,V_b\,(\overrightarrow{a}\cdot \overrightarrow{b})`$ |
|
|
|
$`+U_b\,V_a\,(\overrightarrow{b}\cdot \overrightarrow{a})+V_b^2\,(\overrightarrow{b}\cdot\overrightarrow{b})`$<br> |
|
|
|
$`\quad = U_a^2\,\overrightarrow{a}^2 + V_b^2\,\overrightarrow{b}^2 + (U_a\,V_a+U_b\,V_a)\,(\overrightarrow{a}\cdot \overrightarrow{b})`$ |
|
|
|
$`= U_a^2\,\overrightarrow{a}^2 + V_b^2\,\overrightarrow{b}^2 + (U_a\,V_a+U_b\,V_a)\,(\overrightarrow{a}\cdot \overrightarrow{b})`$ |
|
|
|
|
|
|
|
##### Norma de un vector / norme d'un vecteur / ... |
|
|
|
|
|
|
|
$`||\overrightarrow{U}||=\sqrt{\overrightarrow{U}\cdot\overrightarrow{U}}=\overrightarrow{U}^{\dfrac{1}{2}}`$ |
|
|
|
|
|
|
|
|
|
|
|
##### Vector unitario / Vecteur unitaire / |
|
|
|
|