|
|
|
@ -526,7 +526,7 @@ $`\quad\forall\overrightarrow{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ |
|
|
|
$`\quad\vec{U}\land\vec{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}\land\begin{pmatrix}V_1\\V_2\\V_3\end{pmatrix}`$ |
|
|
|
$`\begin{pmatrix}U_2 V_3 - U_3 V_2\\U_3 V_1 - U_1 V_3\\U_1 V_2 - U_2 V_1\end{pmatrix}`$ |
|
|
|
$`=U_1V_1\,\overrightarrow{e_3}+U_2V_3\,\overrightarrow{e_1}+U_3V_1\,\overrightarrow{e_2}`$ |
|
|
|
$`- U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$ |
|
|
|
$`-U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$ |
|
|
|
|
|
|
|
|
|
|
|
* [ES] <br> |
|
|
|
@ -535,7 +535,7 @@ $`- U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overright |
|
|
|
<br>$`\vec{U}\land\vec{V}=\begin{vmatrix} \overrightarrow{e_1}&\overrightarrow{e_2}&\overrightarrow{e_3}\\ |
|
|
|
U_1 & U_2 & U_3\\V_1 & V_2 & V_3\end{vmatrix}`$ |
|
|
|
$`=U_1V_1\,\overrightarrow{e_3}+U_2V_3\,\overrightarrow{e_1}+U_3V_1\,\overrightarrow{e_2}`$ |
|
|
|
$`- U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$ |
|
|
|
$`-U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|