Browse Source

Update textbook.fr.md

keep-around/c9137b14eb88353f76286c86eb4980b9863a4a92
Claude Meny 5 years ago
parent
commit
c9137b14eb
  1. 15
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

15
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

@ -513,13 +513,14 @@ $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base orthonormée
$`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$ $`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$
$`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{V}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$ $`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{V}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$
* For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$,
we should use (?) (http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04) : <br>
$`\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right.`$
* méthode des produits en croix :
* [FR] For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$,
we shouldn't we use (http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04) : <br>
$`\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3\end{array}\right)`
$`\displaystyle\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3\end{array}\right)`$
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ?
* [ES] <br>
[FR] méthode des produits en croix :<br>
$`\forall\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ et $`\forall\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ et
$`\forall\overrightarrow{V}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ $`\forall\overrightarrow{V}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$
$`$`\vec{U}\land\vec{V}=`$ $`$`\vec{U}\land\vec{V}=`$

Loading…
Cancel
Save