|
|
@ -513,13 +513,14 @@ $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base orthonormée |
|
|
$`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$ |
|
|
$`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$ |
|
|
$`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{V}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$ |
|
|
$`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{V}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$ |
|
|
|
|
|
|
|
|
* For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$, |
|
|
|
|
|
we should use (?) (http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04) : <br> |
|
|
|
|
|
$`\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ |
|
|
|
|
|
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right.`$ |
|
|
|
|
|
|
|
|
|
|
|
* méthode des produits en croix : |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* [FR] For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$, |
|
|
|
|
|
we shouldn't we use (http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04) : <br> |
|
|
|
|
|
$`\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3\end{array}\right)` |
|
|
|
|
|
$`\displaystyle\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3\end{array}\right)`$ |
|
|
|
|
|
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ? |
|
|
|
|
|
|
|
|
|
|
|
* [ES] <br> |
|
|
|
|
|
[FR] méthode des produits en croix :<br> |
|
|
$`\forall\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ et |
|
|
$`\forall\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ et |
|
|
$`\forall\overrightarrow{V}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ |
|
|
$`\forall\overrightarrow{V}=\left(\begin{array}{l}U_1\\U_2\\U_3)\end{array}\right)`$ |
|
|
$`$`\vec{U}\land\vec{V}=`$ |
|
|
$`$`\vec{U}\land\vec{V}=`$ |
|
|
|