Browse Source

Update textbook.fr.md

keep-around/e42158c6b54382c8ae5fb50459d285eadf8fcacd
Claude Meny 5 years ago
parent
commit
e42158c6b5
  1. 2
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

2
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

@ -418,7 +418,7 @@ $`\displaystyle\quad\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_
$`\begin{array}{l}\left.\overrightarrow{U}\cdot\overrightarrow{V}=||\overrightarrow{U}||\cdot||\overrightarrow{V}||\cdot
cos (\widehat{\overrightarrow{U},\overrightarrow{V}})//
\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + U_3\,V_3\right|\quad\Longrightarrow`$
\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + U_3\,V_3\right|end{array}\quad\Longrightarrow`$
$`\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3}{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}`$
$`\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3}
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$

Loading…
Cancel
Save