21 KiB
| title | published | routable | visible | lessons |
|---|---|---|---|---|
| Brainstorming partie "au-delà" | true | true | false | {slug brainstorming-3-parts} {order 3} |
Brainstorming partie "Au-delà"
Un rappel de ce qui est annoncé sur les 3 parties de cours est à :
https://m3p2.com/fr/m3p2_pedagogy/m3p2-pedagogy
1 - Ce dont nous disposons actuellement
Déjà décrit dans le brainstorming de la partie "Principal".
2 - Brainstorming pour cette partie "au-delà" de cours
Les différents propositions sont numérotées : elles commencent par :
[BB-numéro] : Titre
(BB pour Brainstorming Beyond)
-
Pour réagir à une proposition existante, rajouter votre commentaire à la suite des autres en commençant par trois initiales entre parenthèse vous représentants :
(CLM) : commentaire d'untel
(mes initiales) : mon commentaire -
Pour ajouter une proposition, créez là dans ou à la suite (suivant la logique de la proposition) des propositions existantes. Pour cela, commencer par un nouveau [BB-numéro] : Titre
[BB-10] Élément de style.
(CLE) Les fichiers de cours de chacune des trois parties sont différenciés (textbook pour la partie princiale,
cheatsheet pour la partie synthèse, annex pour la partie au-delà). Pour l'instant aucune personnalisation,
aucune feuille de style spécifique n'est appliquée à ces types de fichier.
Nous pourrons personnaliser plus le style de chaque partie pour mieux les différencier et identifier.
Mais déjà, une idée à tester.
Sur le premier prototype, le fond de cette partie au-delà était très légèrement colorée d'un violet clair.
A tester et choisir entre nous.
[BB-20] Différents éléments.
(CLE) C'est la partie qui permet :
- de dire tout ce qu'on a pas le temps de dire dans des cours classique, mais qu'on rêverait de dire et qui pourrait motiver plus les étudiants (au-delà de la simple acquisition de connaissances et compétences).
- de renforcer les explications sur des points particuliers et aïgus de cours (petites vidéos très courtes?)
- de proposer des défis sur plusieurs jours, pour que l'apprenant puisse réfléchir à un sujet proposé en dehors du temps d'apprentissage devant l'écran (par exemple réfléchir à la localisation d'une image en réflexion, en faisant attention à ce qu'on voit en réflexion dans la vitre d'un métro...)
- proposer des questionnaires, ou petits exercices de compréhension ou permettant d'acquérir des réflexes (écrit en javascript par exemple)
- proposer des problèmes représentatifs des examens.
Pour organiser ces éléments, il faut les regrouper dans un petit nombre de catégories facilement identifiables.
Sont proposées les catégories suivantes, mais à débattre, toutes les idées sont bienvenues :
!!!! DIFFICULT POINT (contribute, or indicate a difficult point of understanding) !!!!
!!! DO YOU MASTER ? !!!
!!! Describe the test. !!!
!!! Texte du test (et ses images, figures, audio, video, etc ...)!!! [a figure for the test]
!!! Texte de la question !!!
!!! Choix de réponse 1 !!!
!!! Texte si la réponse 1 est choisie!!! </details markdown=2> !!!
!!! Choix de réponse 2 !!!
!!! Texte si la réponse 2 est choisie!!! </details markdown=3> !!! </details markdown=1>
!! BEYOND (to contribute) !!
!! CULTURAL POINT (contributor) !!
! YOUR CHALLENGE : look at the picture, and think of the right answers to the following questions ! ! Do not look at the answer, take time to think, a few days if necessary. The time to build your mental representation of the phenomenon, to formulate it in words is important, a thousand times more important than the ephemeral instant where you read the fews words of the solution. ! !
! INDICE "key word" !
! diffusion !! ANSWER !
! diffusion !Quelques exemples
! YOUR CHALLENGE : An object (a painting), a physical system (a lensball), how many scenarios and optical systems?
!
! Skill tested : understanding of physical situations
!
!
!
! Discovery time : 30 minutes
! Resolution time : 10 minutes
!
!
! I choose it !
! A lensball is a simple physical system: a sphere of glass of refractive index $n=1.5$ and of radius $R=5\;cm$.
!
! A ball lensball is placed in front of a painting. Depending on the position of the observer or the camera,
! the optical system (the sequence of simple optical elements crossed by light between the physical object
! and the observed image) that forms the image differs.
!
! Observe the 3 images of the painting given by the lensball :
!
! Image 1
!
!
!
! Images 2 (the smallest) and 3
!
!
!
! For each image of the painting, can you identify the optical system, then specify ! the characteristics of the various simple elements that constitute the system and their relative distances? ! ! * _The resolution time is the typical expected time to be allocated to this problem if it was part of an examen for an optics certificate._ ! * _The discovery time is the expected time required to prepare this challenge if you don't have practice. But take as much time as you need._ ! ! <\details> ! <details markdown=1> ! <summary> ! Ready to answer M3P2 team questions for image 1? ! </summary> ! ! <details markdown=1> ! <summary> ! Where is the painting located? ! </summary> ! * The painting is located on the other side of the lens, in relation to you. ! </details> ! <details markdown=1> ! <summary> ! What is the optical system giving the image of the painting? ! </summary> ! <br> ! * The optical system is composed of two spherical refracting surfaces, centered on the same optical axis.<br> ! <br> ! </details> ! <details markdown=1> ! <summary> ! How do you characterize each of the single optical elements that make up this optical system, ! and their relative distances? ! </summary> ! <br> ! * The optical axis is oriented positively in the direction of light propagation ! (from the painting towards the lensball).<br> ! <br> ! * The first spherical refracting surface ! $DS1$ encountered by the light has ! the follwing characteristics :<br> ! $\overline{S_1C_1}=+|R|=+5;cm$, ! $n_{ini}=1$ and $n_{fin}=1.5$. ! <br> ! * The second spherical refracting surface ! $DS2$ encountered by the light has the follwing characteristics :<br> ! $\overline{S_2C_2}=-|R|=-5;cm$ , ! $n_{ini}=1.5$ and $n_{fin}=1$ ! ! * Algebraic distance between $DS1$ and $DS2$ is : $\overline{S_1S_2}=+10;cm$ ! ! </details> ! <details markdown=1> ! <summary> ! If you had to determine the characteristics of the image (position, size), how ! would you handle the problem? ! </summary> ! ! * $DS1$ gives an image $B_1$ of an object $B$. This image $B_1$ for $DS1$ ! becomes the object for $DS2$. $DS2$ gives an image $B'1$ of the object $B_1$ ! ! </details> ! </details> ! <!--FOR IMAGES 2 & 3--> ! ! <details markdown=1> ! <summary> ! Ready to answer M3P2 team questions for images 2 and 3? ! </summary> ! ! <details markdown=1> ! <summary> ! Where is the painting located? ! </summary> ! ! * The painting is located on the same side of the lens as you, behind you. ! ! </details> ! <details markdown=1> ! <summary> ! ! What are the two optical systems at the origin of the two images of the painting? And ! can you characterize each of the single optical elements (+ their relative distances) ! that make up each of these optical systems ? ! </summary> ! ! * A first optical system $OS1$ is composed of a simple convexe spherical mirror ! (the object is reflected on the front face of the ball lensball). Keaping the optical ! axis positively oriented in the direction of the incident light propagation on the lensball, ! the algebraic value of the mirror radius is : $\overline{SC}=+5;c$. ! ! * The second optical system $OS2$ is composed of three simple optical elements :<br><br> ! 1) The light crosses a spherical refracting surface $DS1$ with characteristics : ! $\overline{S_1C_1}=+|R|=+5;cm$ , $n_{ini}=1$ and $n_{fin}=1.5$. ! ! 2) Then the light is reflected at the surface of the last lensball interface that ! acts like a spherical mirror of characteristics : $\overline{S_2C_2}=-|R|=-5;cm$, ! $n=1.5$. ! ! 3) Finally the light crosses back the first interface of the lensball that acts ! like a spherical refracting surface those characteristics are : ! $\overline{S_3C_3}=+|R|=+5;cm$ , $n_{ini}=1.5$ and $n_{fin}=1$. ! ! Relative algebraic distances between the different elements of $OS2$ are : ! ! $\overline{S_1S_2}=+10;cm$ and $\overline{S_2S_3}=-10;cm`$
!
! ! Which image is associated with each of the optical systems? !
! ! * It is difficult to be 100% sure before having made the calculations. ! !! Why do we had to take the picture in the darkness, with only the painting ! illuminated behind the camera, to obtain images 2 and 3 ? !
! ! * At a refracting interface, part of the light incident power is refracted, ! and part is reflected. For transparent material like glass and for visible light, ! the part of the reflected power is small. If the room had been homogeneously ! illuminated, the images 2 and 3 of the painting on the wall behind the camera would ! have been faintly visible compared to the image of the front wall through the lensball. !! YOUR CHALLENGE : Looking at a cathedral through a lensball. Can you predict your observation?
!
! Skill tested : to know how to carry out calculations
!
!
!
! Discovery time : 2 hours
! Resolution time : 30 minutes
!
! I choose it !
! A lensball is a polished spherical ball of radius $R=5 cm$, made of glass of refractive
! index value $n_{glass}=1.5$. The cathedral is 90 meters high, and you stand with the lensball
! 400 meters from the cathedral. You look at the cathedral through the lens, your eye being at
! 20 cm from the center of the lens. What would you expect to see?
!
! * The resolution time is the typical expected time to be allocated to this problem
! if it was part of an examen for an optics certificate.
!
! * The discovery time is the expected time you require to prepare this challenge
! if you don't have practice. However, this is just an indication, take as much time as
! you need. The time to question yourself serenely about how to handle the problem,
! about the method of resolution and its validity, about some possible approximations
! if they can be justified, and the time you need to check the equations if you have
! not previously memorised them and to perfom the calculation, are important.
!
! ! Ready to answer questions ? !
! !! What is the scientifical framework you choose to study this problem ? !
! * All the characteristic sizes in this problem are much bigger than the wavelength of ! the visible radiation ($\lambda\approx5\mu m$), so I deal with this problem in the
! framework of geometrical optics, and in the paraxial approximation in order to
! characterize the image.
!
! * The cathedral sustains an angle of $arctan\dfrac{90}{400}=13°$ from the lensball.
! This value seems reasonable to justify at first order the use of the paraxial approximation
! (we usually consider that angles of incidence would not exceed 10° on the various simple
! optical element encountered between the objet (here the cathedral) and the final image
! (retina of the eye or matrix sensor of a camera).
! ! Describe the optical system for this use of the lensball. !
! ! * The lensball breaks down into two refracting spherical surfaces sharing the same ! centre of curvature C and of opposite radius (in algebraic values). ! !! What is your method of resolution ? !
! * You don't use general equations 3a and 3b for a thick lens, they are too complicated ! to remind, and you don't have in m3p2 to "use" but to "build a reasoning". And you don't ! know at this step how to handle with centered optical systems. ! ! * But this system is simple, so you will calculate the image of the cathedral by the ! first spherical refracting surface $DS_1$ encountered by the light from the cathedral $DS_1$.
! Then this image becomes the object for the second spherical refracting surface $DS_2$
! and so I can determine position and size of the final image.
!
! * For a spherical refracting surface, general equations are :! $
\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}$
! for the position.! $
\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}$
! for the transverse magnification.
!
! ! How do you set down your calculations? !
! ! * The optical axis is the straight line that joins the center C of the lens to my eye, ! positively oriented in the direction of light propagation light for that observation, ! so from the cathedral to my eye. ! * First spherical refrating surface $DS1$ : $\overline{S_1C_1}=+5\:cm$, $n_{ini}=1$ (air)
! and $n_{fin}=1.5$ (glass).! Second spherical refrating surface $
DS2$ : $\overline{S_1C_1}=-5\:cm$, $n_{ini}=1.5$ (glass)
! and $n_{fin}=1$ (air)! Distance between $
DS1$ and $DS2$ vertices : $\overline{S_1S_2}=+10\:cm$! Object cathedral $
AB$ : $\overline{AB}=90\;m$ and $\overline{S_1A}=-400\;m$! Let us write $
\overline{A_1B_1}$ the intermediate image (the image of the cathedral
! given by $DS1$.
!
! * Specific equations for $DS1$ are :! $
\dfrac{1.5}{\overline{S_1A_1}}-\dfrac{1}{\overline{S_1A}}=\dfrac{0.5}{\overline{S_1C_1}}$ (équ. DS1a),
! and $\overline{M_T}=\dfrac{\overline{S_1A_1}}{1.5\cdot\overline{S_1A}}$ (équ. DS1b)! Specific equations for $
DS2$ are :! $
\dfrac{1}{\overline{S_2A'}}-\dfrac{1.5}{\overline{S_2A_1}}=-\dfrac{0.5}{\overline{S_2C_2}}$ (équ. DS2a), and
! $\overline{M_T}=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_2A_1}}$ (équ. DS2b)! The missing link between these two sets of equations is :
! $
\overline{S_2A_1}=\overline{S_2S_1}+\overline{S_1A_1}=\overline{S_1A_1}-\overline{S_1S_2}$.
!
! ! Do you see some approximation that can be done ? !
! * In the visible range, refractive index values of transparent material are in the range [1 ; 2], ! then the focal lengthes of a spherical refractive surface (object as well as image) are ! expected to remain in the same order of magnitude than the radius of curvature, ! so a few centimeters in this case (we talk in absolute value here). ! ! * We can if we want just check this fact for $DS1$ ($|S_1C_1|=5\;cm$) using équation DS1 :! - considering $
\overline{S_1A_1}\longrightarrow\infty$ to obtain the object focal length
! $\overline{S_1F_1}$} we get :! $
-\dfrac{1}{\overline{S_1F_1}}=\dfrac{0.5}{\overline{S_1C_1}}$
! $\Longrightarrow=\overline{S_1F_1}=-10\;cm$! - considering $
\overline{S_1A}\longrightarrow\infty$ to obtain the image focal length
! $\overline{S_1F'_1}$ we get :! $
\dfrac{1.5}{\overline{S_1F'_1}}=\dfrac{0.5}{\overline{S_1C_1}}\Longrightarrow\overline{S_1F'_1}=+15\;cm$
!
! * The distance of the cathedral from the lensball $|\overline{S_1A}|=90\;m$ is huge
! compared to the object focal length $|\overline{S_1F_1}|=10\;cm$, we can consider
! that the cathedral is at infinity from the lensball and so the image $\overline{A_1B_1}$
! of the cathedral stands quasi in the image focal plane of $DS1$ :
! $\overline {S_1A_1}=\overline {S_1F'_1}=+15cm$. So we can directly use equation DS2a with :! $
\overline{S_2A_1}=\overline{S_2F'_1}=\overline{S_2S_1}+\overline{S_1F'_1}$
! $=\overline{S_1F'_1}-\overline{S_1S_2}=+15-10=+5\;cm$..
!
! ! Where is the image and how tall it is ? !
! ! * To perform calculation, you must choose a unic lenght unit in your calculation, ! here $cm$ or $m$. We choose $m$ below.
! * Equation DS1a gives :! $
\dfrac{1.5}{\overline{S_1A_1}}-\dfrac{1}{-400}=\dfrac{0.5}{0.05}$ $\Longrightarrow\overline{S_1A_1}=0.15\;m$! With more than 2 significant figures, your calculator would tell you $
0.150037$,
! which nearly exactly the value of $\overline{S_1F'_1}=+0.15\;m$, so the approximation
! $\overline{S_1A_1}=\overline{S_1F'_1}$ you could have done is fully justified.
!
! * Equation DS2a gives :! $
\dfrac{1}{\overline{S_2A'}}-\dfrac{1.5}{-0.1+0.15}=\dfrac{-0.5}{-0.05}$
! $\Longrightarrow\overline{S_2A'}=0.025\;m$
!
! * The final image is real, and stands 2.5 cm in front of the lensball in the side
! of your eye. Do not bring your eye or camera too close of the lensball !
!
! * The size of an image (transversally to the optical axis) is given by the transverse
! magnification $M_T$. By Definition $M_T$ is the ratio of the algebraic size of
! the final image $\overline{A'B'}$ to the algebraic size of the initial object $\overline{AB}$.
! With an intermediate image, it can be break down :! $
M_T=\dfrac{\overline{A'B'}}{\overline{AB}}$
! $=\dfrac{\overline{A'B'}}{\overline{A_1B_1}}\times\dfrac{A_1B_1}{\overline{AB}}$! It is the product of the transverse magnifications of the cathedral introduced ! by the two spherical refracting surfaces of the lensball.
! $
\overline{M_T}$ introduced by $DS1$ is
! $\overline{M_T}=\dfrac{\overline{S_1A_1}}{1.5\cdot\overline{S_1A}}$
! $=\dfrac{+0.15}{1.5\times(-400)}=-0.00025$! $
\overline{M_T}$ introduced by $DS2$ is
! $\overline{M_T}=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_2A_1}}$
! $=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_1A_1}-\overline{S_1S_2}}$
! $=\dfrac{1.5\cdot0.025}{+0.15-0.10} =0.75$! So $
\overline{M_T}$ introduced by the lensball is :! $
\overline{M_T}=-0.00025\times0.75$ $=-0.00019\approx-1.9\cdot10^{-4}$! The image is $
\dfrac{1}{-1.9\cdot10^{-4}}\approx5300$ smaller than the cathedral.! $
M_T=\dfrac{\overline{A'B'}}{\overline{AB}}\approx8\cdot10^{-4}$
! $\Longrightarrow\overline{A'B'}=\overline{AB} \times M_T$
! $=1.9\cdot10^{-4} \times 90\;m=-0.017\;m$! The image is 1.7 cm height and it is reversed. !
! What is the apparent magnification of the cathedral ? !
! * Apparent magnification = angular magnification = magnifying power. ! ! * As calculated previously, standing 400 metres from the cathedral, the 90 m heigh ! cathedral sustends the apparent angles of $\alpha=arctan\left(\dfrac{90}{400}\right)=0.221\;rad=12.7°$
! at your eye.!
! * The image of the cathedral is 1.7 cm heigth and is located between the lens ! (from its vertex $
S2$) and your eyes and at 2.5cm from the lens. If your eye is
! 20cm away from the lens, so the distance eye-image is 17.5 cm (we use no algebraic values).
! Thus the image of the catedral subtends the apparent angle
! $\alpha'=arctan\left(\dfrac{1.7}{17.5}\right)=0.097\;rad=5.6°$ at your eye.!
! * The apparent magnification $
M_A$ of the cathedral throught the lensball for my
! eye in that position is! $
M_A=\dfrac{\alpha'}{\alpha}=\dfrac{0.097}{0.221}=0.44$.! Taking into account that the image is reversed, the algebraic value of the apparent ! magnification is $
\overline{M_A}=-0.44$.!
! * You could obtained directly this algebraic value of $
M_A$ by considering algebraic
! lengthes and angles values in the calculations :! $
\overline{M_A}=\dfrac{\overline{\alpha'}}{\overline{\alpha}}$
! $=\dfrac {arctan\left(\frac{-0.017}{-0.175}\right)} {arctan\left(\frac{90}{-400}\right)}$ $=\dfrac{0.097}{-0.221}=-0.44$
!
! 
! Cathedral of Orleans (France) !
!! BEYOND : The gravitationnal lensball (or Einstein's ring), due to a black hole or a galaxy.
!! Similarities, and differences.
!!
!!
!!
!!