🇨🇴 Una base de datos de cursos en diferentes lenguajes. 🇫🇷 Une base de données de cours dans différents langages. 🇳🇴 En database med kurs på forskjellige språk. 🇺🇸 A flat-file database of courses in multiple languages.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

512 lines
21 KiB

5 years ago
5 years ago
  1. ---
  2. title: Brainstorming partie "au-delà"
  3. published: true
  4. routable: true
  5. visible: false
  6. lessons:
  7. - slug: brainstorming-3-parts
  8. order: 3
  9. ---
  10. #### Brainstorming partie "Au-delà"
  11. Un rappel de ce qui est annoncé sur les 3 parties de cours est à :<br>
  12. https://m3p2.com/fr/m3p2_pedagogy/m3p2-pedagogy
  13. ##### 1 - Ce dont nous disposons actuellement
  14. Déjà décrit dans le brainstorming de la partie "Principal".
  15. ##### 2 - Brainstorming pour cette partie "au-delà" de cours
  16. Les différents propositions sont numérotées : elles commencent par :<br>
  17. *[BB-numéro] : Titre* <br>
  18. _(BB pour Brainstorming Beyond)_
  19. * Pour **réagir à une proposition existante**, rajouter votre commentaire à la suite des autres
  20. en commençant par trois initiales entre parenthèse vous représentants :<br>
  21. (CLM) : commentaire d'untel<br>
  22. *(mes initiales) : mon commentaire*
  23. * Pour **ajouter une proposition**, créez là dans ou à la suite (suivant la logique de la proposition)
  24. des propositions existantes. Pour cela, commencer par un nouveau *[BB-numéro] : Titre*
  25. -------------
  26. **[BB-10] Élément de style**.
  27. (CLE) Les fichiers de cours de chacune des trois parties sont différenciés (textbook pour la partie princiale,
  28. cheatsheet pour la partie synthèse, annex pour la partie au-delà). Pour l'instant aucune personnalisation,
  29. aucune feuille de style spécifique n'est appliquée à ces types de fichier.<br>
  30. Nous pourrons *personnaliser plus le style de chaque partie pour mieux les différencier et identifier*.
  31. Mais déjà, une idée à tester.
  32. Sur le premier prototype, le fond de cette partie au-delà était très légèrement colorée d'un violet clair.
  33. A tester et choisir entre nous.
  34. -----------------
  35. **[BB-20] Différents éléments**.
  36. (CLE) C'est la partie qui permet :<br>
  37. * de dire tout ce qu'on a pas le temps de dire dans
  38. des cours classique, mais qu'on rêverait de dire et qui pourrait motiver plus les étudiants
  39. (au-delà de la simple acquisition de connaissances et compétences).
  40. * de renforcer les explications sur des points particuliers et aïgus de cours (petites vidéos
  41. très courtes?)
  42. * de proposer des défis sur plusieurs jours, pour que l'apprenant puisse réfléchir à
  43. un sujet proposé en dehors du temps d'apprentissage devant l'écran (par exemple réfléchir à
  44. la localisation d'une image en réflexion, en faisant attention à ce qu'on voit en réflexion
  45. dans la vitre d'un métro...)
  46. * proposer des questionnaires, ou petits exercices de compréhension ou permettant d'acquérir
  47. des réflexes (écrit en javascript par exemple)
  48. * proposer des problèmes représentatifs des examens.
  49. Pour organiser ces éléments, il faut les regrouper dans un petit nombre de catégories
  50. facilement identifiables.
  51. Sont proposées les catégories suivantes, mais à débattre, toutes les idées sont bienvenues :
  52. !!!! *DIFFICULT POINT* (contribute, or indicate a difficult point of understanding)
  53. !!!!
  54. !!! *DO YOU MASTER ?*
  55. !!! <details markdown=1>
  56. !!! <summary>
  57. !!! Describe the test.
  58. !!! </summary>
  59. !!! Texte du test (et ses images, figures, audio, video, etc ...)<br>
  60. !!! [a figure for the test]<br>
  61. !!! Texte de la question
  62. !!! <details markdown=2>
  63. !!! <summary>
  64. !!! Choix de réponse 1
  65. !!! </summary>
  66. !!! Texte si la réponse 1 est choisie<br><br>
  67. !!! </details markdown=2>
  68. !!! <details markdown=3>
  69. !!! <summary>
  70. !!! Choix de réponse 2
  71. !!! </summary>
  72. !!! Texte si la réponse 2 est choisie<br><br>
  73. !!! </details markdown=3>
  74. !!! </details markdown=1>
  75. !! *BEYOND* (to contribute)
  76. !!
  77. !! *CULTURAL POINT* (contributor)
  78. !!
  79. ! *YOUR CHALLENGE* : look at the picture, and think of the right answers to the following questions
  80. !
  81. ! _Do not look at the answer, take time to think, a few days if necessary. The time to build your mental representation of the phenomenon, to formulate it in words is important, a thousand times more important than the ephemeral instant where you read the fews words of the solution._
  82. !
  83. ! <details markdown=1>
  84. ! <summary>
  85. ! INDICE "key word"
  86. ! </summary>
  87. ! diffusion
  88. ! </details>
  89. ! <details markdown=1>
  90. ! <summary>
  91. ! ANSWER
  92. ! </summary>
  93. ! diffusion
  94. ! </details>
  95. ------------------------------
  96. ##### Quelques exemples
  97. ! *YOUR CHALLENGE* : An object (a painting), a physical system (a lensball), how many scenarios and optical systems?
  98. !
  99. ! _Skill tested : understanding of physical situations_
  100. !
  101. ! ![](physical-system-versus-optical-system_L650.gif)
  102. !
  103. ! *Discovery time : 30 minutes*<br>
  104. ! *Resolution time : 10 minutes*
  105. !
  106. ! <details markdown=1>
  107. ! <summary>
  108. ! I choose it
  109. ! </summary>
  110. ! A lensball is a simple physical system: a sphere of glass of refractive index $`n=1.5`$ and of radius $`R=5\;cm`$.
  111. !
  112. ! A ball lensball is placed in front of a painting. Depending on the position of the observer or the camera,
  113. ! the optical system (the sequence of simple optical elements crossed by light between the physical object
  114. ! and the observed image) that forms the image differs.
  115. !
  116. ! Observe the 3 images of the painting given by the lensball :
  117. !
  118. ! Image 1
  119. !
  120. ! ![](lentille-boule-1-transparence_L650.jpg)
  121. !
  122. ! Images 2 (the smallest) and 3
  123. !
  124. ! ![](lentille-boule-2-reflexions_L650.jpg)
  125. !
  126. ! For each image of the painting, can you identify the optical system, then specify `
  127. ! the characteristics of the various simple elements that constitute the system and their relative distances?
  128. !
  129. ! * _The resolution time is the typical expected time to be allocated to this problem if it was part of an examen for an optics certificate._
  130. ! * _The discovery time is the expected time required to prepare this challenge if you don't have practice. But take as much time as you need._
  131. !
  132. ! <\details>
  133. ! <details markdown=1>
  134. ! <summary>
  135. ! Ready to answer M3P2 team questions for image 1?
  136. ! </summary>
  137. !
  138. ! <details markdown=1>
  139. ! <summary>
  140. ! Where is the painting located?
  141. ! </summary>
  142. ! * The painting is located on the other side of the lens, in relation to you.
  143. ! </details>
  144. ! <details markdown=1>
  145. ! <summary>
  146. ! What is the optical system giving the image of the painting?
  147. ! </summary>
  148. ! <br>
  149. ! * The optical system is composed of two spherical refracting surfaces, centered on the same optical axis.<br>
  150. ! <br>
  151. ! </details>
  152. ! <details markdown=1>
  153. ! <summary>
  154. ! How do you characterize each of the single optical elements that make up this optical system,
  155. ! and their relative distances?
  156. ! </summary>
  157. ! <br>
  158. ! * The optical axis is oriented positively in the direction of light propagation
  159. ! (from the painting towards the lensball).<br>
  160. ! <br>
  161. ! * The first spherical refracting surface
  162. ! $`DS1`$ encountered by the light has
  163. ! the follwing characteristics :<br>
  164. ! $`\overline{S_1C_1}=+|R|=+5\;cm`$,
  165. ! $`n_{ini}=1`$ and $`n_{fin}=1.5`$.
  166. ! <br>
  167. ! * The second spherical refracting surface
  168. ! $DS2$ encountered by the light has the follwing characteristics :<br>
  169. ! $`\overline{S_2C_2}=-|R|=-5\;cm`$ ,
  170. ! $`n_{ini}=1.5`$ and $`n_{fin}=1`$
  171. !
  172. ! * Algebraic distance between $DS1$ and $DS2$ is : $`\overline{S_1S_2}=+10\;cm`$
  173. !
  174. ! </details>
  175. ! <details markdown=1>
  176. ! <summary>
  177. ! If you had to determine the characteristics of the image (position, size), how
  178. ! would you handle the problem?
  179. ! </summary>
  180. !
  181. ! * $`DS1`$ gives an image $`B_1`$ of an object $`B`$. This image $`B_1`$ for $`DS1`$
  182. ! becomes the object for $`DS2`$. $`DS2`$ gives an image $`B'1`$ of the object $`B_1`$
  183. !
  184. ! </details>
  185. ! </details>
  186. ! <!--FOR IMAGES 2 & 3-->
  187. !
  188. ! <details markdown=1>
  189. ! <summary>
  190. ! Ready to answer M3P2 team questions for images 2 and 3?
  191. ! </summary>
  192. !
  193. ! <details markdown=1>
  194. ! <summary>
  195. ! Where is the painting located?
  196. ! </summary>
  197. !
  198. ! * The painting is located on the same side of the lens as you, behind you.
  199. !
  200. ! </details>
  201. ! <details markdown=1>
  202. ! <summary>
  203. !
  204. ! What are the two optical systems at the origin of the two images of the painting? And
  205. ! can you characterize each of the single optical elements (+ their relative distances)
  206. ! that make up each of these optical systems ?
  207. ! </summary>
  208. !
  209. ! * A first optical system $`OS1`$ is composed of a simple convexe spherical mirror
  210. ! (the object is reflected on the front face of the ball lensball). Keaping the optical
  211. ! axis positively oriented in the direction of the incident light propagation on the lensball,
  212. ! the algebraic value of the mirror radius is : $`\overline{SC}=+5\;c`$.
  213. !
  214. ! * The second optical system $`OS2`$ is composed of three simple optical elements :<br><br>
  215. ! 1) The light crosses a spherical refracting surface $`DS1`$ with characteristics :
  216. ! $`\overline{S_1C_1}=+|R|=+5\;cm`$ , $`n_{ini}=1`$ and $`n_{fin}=1.5`$.
  217. !
  218. ! 2) Then the light is reflected at the surface of the last lensball interface that
  219. ! acts like a spherical mirror of characteristics : $`\overline{S_2C_2}=-|R|=-5\;cm`$,
  220. ! $`n=1.5`$.
  221. !
  222. ! 3) Finally the light crosses back the first interface of the lensball that acts
  223. ! like a spherical refracting surface those characteristics are :
  224. ! $`\overline{S_3C_3}=+|R|=+5\;cm`$ , $`n_{ini}=1.5$ and $n_{fin}=1`$.
  225. !
  226. ! Relative algebraic distances between the different elements of $`OS2`$ are :
  227. !
  228. ! $`\overline{S_1S_2}=+10\;cm`$ and $`\overline{S_2S_3}=-10\;cm`$
  229. !
  230. ! </details>
  231. ! <details markdown=1>
  232. ! <summary>
  233. ! Which image is associated with each of the optical systems?
  234. ! </summary>
  235. !
  236. ! * It is difficult to be 100% sure before having made the calculations.
  237. !
  238. ! </details>
  239. ! <details markdown=1>
  240. ! <summary>
  241. ! Why do we had to take the picture in the darkness, with only the painting
  242. ! illuminated behind the camera, to obtain images 2 and 3 ?
  243. ! </summary>
  244. !
  245. ! * At a refracting interface, part of the light incident power is refracted,
  246. ! and part is reflected. For transparent material like glass and for visible light,
  247. ! the part of the reflected power is small. If the room had been homogeneously
  248. ! illuminated, the images 2 and 3 of the painting on the wall behind the camera would
  249. ! have been faintly visible compared to the image of the front wall through the lensball.
  250. ! </details>
  251. ! </details>
  252. ! </details>
  253. ! *YOUR CHALLENGE* : Looking at a cathedral through a lensball. Can you predict your observation?
  254. !
  255. ! _Skill tested : to know how to carry out calculations_
  256. !
  257. ! ![](lensball-brut-820-760.jpg)
  258. !
  259. ! *Discovery time : 2 hours*<br>
  260. ! *Resolution time : 30 minutes*
  261. ! <details markdown=1>
  262. ! <summary>
  263. ! I choose it
  264. ! </summary>
  265. ! A lensball is a polished spherical ball of radius $`R=5 cm`$, made of glass of refractive
  266. ! index value $`n_{glass}=1.5`$. The cathedral is 90 meters high, and you stand with the lensball
  267. ! 400 meters from the cathedral. You look at the cathedral through the lens, your eye being at
  268. ! 20 cm from the center of the lens. What would you expect to see?
  269. !
  270. ! * _The resolution time is the typical expected time to be allocated to this problem_
  271. ! _if it was part of an examen for an optics certificate_.
  272. !
  273. ! * _The discovery time is the expected time you require to prepare this challenge_
  274. ! _if you don't have practice. However, this is just an indication, take as much time as_
  275. ! _you need. The time to question yourself serenely about how to handle the problem,_
  276. ! _about the method of resolution and its validity, about some possible approximations_
  277. ! _if they can be justified, and the time you need to check the equations if you have_
  278. ! _not previously memorised them and to perfom the calculation, are important._
  279. !
  280. ! <details markdown=1>
  281. ! <summary>
  282. ! Ready to answer questions ?
  283. ! </summary>
  284. ! <!--question 1-->
  285. ! <details markdown=1>
  286. ! <summary>
  287. ! What is the scientifical framework you choose to study this problem ?
  288. ! </summary>
  289. ! * All the characteristic sizes in this problem are much bigger than the wavelength of
  290. ! the visible radiation ($`\lambda\approx5\mu m`$), so I deal with this problem in the
  291. ! framework of geometrical optics, and in the paraxial approximation in order to
  292. ! characterize the image.
  293. !
  294. ! * The cathedral sustains an angle of $`arctan\dfrac{90}{400}=13°`$ from the lensball.
  295. ! This value seems reasonable to justify at first order the use of the paraxial approximation
  296. ! (_we usually consider that angles of incidence would not exceed 10° on the various simple
  297. ! optical element encountered between the objet (here the cathedral) and the final image
  298. ! (retina of the eye or matrix sensor of a camera_).
  299. ! </details>
  300. ! <!--question 2-->
  301. ! <details markdown=1>
  302. ! <summary>
  303. ! Describe the optical system for this use of the lensball.
  304. ! </summary>
  305. !
  306. ! * The lensball breaks down into two refracting spherical surfaces sharing the same
  307. ! centre of curvature C and of opposite radius (in algebraic values).
  308. !
  309. ! </details>
  310. ! <!--question 3-->
  311. ! <details markdown=1>
  312. ! <summary>
  313. ! What is your method of resolution ?
  314. ! </summary>
  315. ! * You don't use general equations 3a and 3b for a thick lens, they are too complicated
  316. ! to remind, and you don't have in m3p2 to "use" but to "build a reasoning". And you don't
  317. ! know at this step how to handle with centered optical systems.
  318. !
  319. ! * But this system is simple, so you will calculate the image of the cathedral by the
  320. ! first spherical refracting surface $`DS_1`$ encountered by the light from the cathedral $`DS_1`$.
  321. ! Then this image becomes the object for the second spherical refracting surface $`DS_2`$
  322. ! and so I can determine position and size of the final image.
  323. !
  324. ! * For a spherical refracting surface, general equations are :<br><br>
  325. ! $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$
  326. ! for the position.<br>
  327. ! $`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$
  328. ! for the transverse magnification.
  329. !
  330. ! </details>
  331. ! <!--question 4-->
  332. ! <details markdown=1>
  333. ! <summary>
  334. ! How do you set down your calculations?
  335. ! </summary>
  336. !
  337. ! * The optical axis is the straight line that joins the center C of the lens to my eye,
  338. ! positively oriented in the direction of light propagation light for that observation,
  339. ! so from the cathedral to my eye.
  340. ! * First spherical refrating surface $`DS1`$ : $`\overline{S_1C_1}=+5\:cm`$, $`n_{ini}=1`$ (air)
  341. ! and $`n_{fin}=1.5`$ (glass).<br>
  342. ! Second spherical refrating surface $`DS2`$ : $`\overline{S_1C_1}=-5\:cm`$, $`n_{ini}=1.5`$ (glass)
  343. ! and $`n_{fin}=1`$ (air)<br>
  344. ! Distance between $`DS1`$ and $`DS2`$ vertices : $`\overline{S_1S_2}=+10\:cm`$<br>
  345. ! Object cathedral $`AB`$ : $`\overline{AB}=90\;m`$ and $`\overline{S_1A}=-400\;m`$<br>
  346. ! Let us write $`\overline{A_1B_1}`$ the intermediate image (the image of the cathedral
  347. ! given by $`DS1`$.
  348. !
  349. ! * Specific equations for $`DS1`$ are :<br><br>
  350. ! $`\dfrac{1.5}{\overline{S_1A_1}}-\dfrac{1}{\overline{S_1A}}=\dfrac{0.5}{\overline{S_1C_1}}`$ (équ. DS1a),
  351. ! and $`\overline{M_T}=\dfrac{\overline{S_1A_1}}{1.5\cdot\overline{S_1A}}`$ (équ. DS1b)<br><br>
  352. ! Specific equations for $`DS2`$ are :<br><br>
  353. ! $`\dfrac{1}{\overline{S_2A'}}-\dfrac{1.5}{\overline{S_2A_1}}=-\dfrac{0.5}{\overline{S_2C_2}}`$ (équ. DS2a), and
  354. ! $`\overline{M_T}=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_2A_1}}`$ (équ. DS2b)<br><br>
  355. ! The missing link between these two sets of equations is :<br>
  356. ! $`\overline{S_2A_1}=\overline{S_2S_1}+\overline{S_1A_1}=\overline{S_1A_1}-\overline{S_1S_2}`$.
  357. !
  358. ! </details>
  359. ! <!--question 5-->
  360. ! <details markdown=1>
  361. ! <summary>
  362. ! Do you see some approximation that can be done ?
  363. ! </summary>
  364. ! * In the visible range, refractive index values of transparent material are in the range [1 ; 2],
  365. ! then the focal lengthes of a spherical refractive surface (object as well as image) are
  366. ! expected to remain in the same order of magnitude than the radius of curvature,
  367. ! so a few centimeters in this case (we talk in absolute value here).
  368. !
  369. ! * We can if we want just check this fact for $`DS1`$ ($`|S_1C_1|=5\;cm`$) using équation DS1 :<br>
  370. ! \- considering $`\overline{S_1A_1}\longrightarrow\infty`$ to obtain the object focal length
  371. ! $`\overline{S_1F_1}`$} we get :<br>
  372. ! $`-\dfrac{1}{\overline{S_1F_1}}=\dfrac{0.5}{\overline{S_1C_1}}`$
  373. ! $`\Longrightarrow=\overline{S_1F_1}=-10\;cm`$<br><br>
  374. ! \- considering $`\overline{S_1A}\longrightarrow\infty`$ to obtain the image focal length
  375. ! $`\overline{S_1F'_1}`$ we get :<br>
  376. ! $`\dfrac{1.5}{\overline{S_1F'_1}}=\dfrac{0.5}{\overline{S_1C_1}}\Longrightarrow\overline{S_1F'_1}=+15\;cm`$
  377. !
  378. ! * The distance of the cathedral from the lensball $`|\overline{S_1A}|=90\;m`$ is huge
  379. ! compared to the object focal length $`|\overline{S_1F_1}|=10\;cm`$, we can consider
  380. ! that the cathedral is at infinity from the lensball and so the image $`\overline{A_1B_1}`$
  381. ! of the cathedral stands quasi in the image focal plane of $`DS1`$ :
  382. ! $`\overline {S_1A_1}=\overline {S_1F'_1}=+15cm`$. So we can directly use equation DS2a with :<br>
  383. ! $`\overline{S_2A_1}=\overline{S_2F'_1}=\overline{S_2S_1}+\overline{S_1F'_1}`$
  384. ! $`=\overline{S_1F'_1}-\overline{S_1S_2}=+15-10=+5\;cm`$..
  385. !
  386. ! </details>
  387. ! <details markdown=1>
  388. ! <summary>
  389. ! Where is the image and how tall it is ?
  390. ! </summary>
  391. !
  392. ! * To perform calculation, you must choose a unic lenght unit in your calculation,
  393. ! here $`cm`$ or $`m`$. We choose $`m`$ below.
  394. ! * Equation DS1a gives :<br>
  395. ! $`\dfrac{1.5}{\overline{S_1A_1}}-\dfrac{1}{-400}=\dfrac{0.5}{0.05}`$ $`\Longrightarrow\overline{S_1A_1}=0.15\;m`$<br>
  396. ! With more than 2 significant figures, your calculator would tell you $`0.150037`$,
  397. ! which nearly exactly the value of $`\overline{S_1F'_1}=+0.15\;m`$, so the approximation
  398. ! $`\overline{S_1A_1}=\overline{S_1F'_1}`$ you could have done is fully justified.
  399. !
  400. ! * Equation DS2a gives :<br>
  401. ! $`\dfrac{1}{\overline{S_2A'}}-\dfrac{1.5}{-0.1+0.15}=\dfrac{-0.5}{-0.05}`$
  402. ! $`\Longrightarrow\overline{S_2A'}=0.025\;m`$
  403. !
  404. ! * The final image is real, and stands 2.5 cm in front of the lensball in the side
  405. ! of your eye. Do not bring your eye or camera too close of the lensball \!
  406. !
  407. ! * The size of an image (transversally to the optical axis) is given by the transverse
  408. ! magnification $`M_T`$. By Definition $`M_T`$ is the ratio of the algebraic size of
  409. ! the final image $`\overline{A'B'}`$ to the algebraic size of the initial object $`\overline{AB}`$.
  410. ! With an intermediate image, it can be break down :<br><br>
  411. ! $`M_T=\dfrac{\overline{A'B'}}{\overline{AB}}`$
  412. ! $`=\dfrac{\overline{A'B'}}{\overline{A_1B_1}}\times\dfrac{A_1B_1}{\overline{AB}}`$<br><br>
  413. ! It is the product of the transverse magnifications of the cathedral introduced
  414. ! by the two spherical refracting surfaces of the lensball. <br><br>
  415. ! $`\overline{M_T}`$ introduced by $`DS1`$ is
  416. ! $`\overline{M_T}=\dfrac{\overline{S_1A_1}}{1.5\cdot\overline{S_1A}}`$
  417. ! $`=\dfrac{+0.15}{1.5\times(-400)}=-0.00025`$<br><br>
  418. ! $`\overline{M_T}`$ introduced by $`DS2`$ is
  419. ! $`\overline{M_T}=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_2A_1}}`$
  420. ! $`=\dfrac{1.5\cdot\overline{S_2A'}}{\overline{S_1A_1}-\overline{S_1S_2}}`$
  421. ! $`=\dfrac{1.5\cdot0.025}{+0.15-0.10} =0.75`$<br><br>
  422. ! So $`\overline{M_T}`$ introduced by the lensball is :<br><br>
  423. ! $`\overline{M_T}=-0.00025\times0.75`$ $`=-0.00019\approx-1.9\cdot10^{-4}`$<br><br>
  424. ! The image is $`\dfrac{1}{-1.9\cdot10^{-4}}\approx5300`$ smaller than the cathedral.<br><br>
  425. ! $`M_T=\dfrac{\overline{A'B'}}{\overline{AB}}\approx8\cdot10^{-4}`$
  426. ! $`\Longrightarrow\overline{A'B'}=\overline{AB} \times M_T`$
  427. ! $`=1.9\cdot10^{-4} \times 90\;m=-0.017\;m`$<br><br>
  428. ! The image is 1.7 cm height and it is reversed.
  429. !</details>
  430. !
  431. !<!--question 7-->
  432. !<details markdown=1>
  433. !<summary>
  434. ! What is the apparent magnification of the cathedral ?
  435. !</summary>
  436. ! * Apparent magnification = angular magnification = magnifying power.
  437. !
  438. ! * As calculated previously, standing 400 metres from the cathedral, the 90 m heigh
  439. ! cathedral sustends the apparent angles of $`\alpha=arctan\left(\dfrac{90}{400}\right)=0.221\;rad=12.7°`$
  440. ! at your eye.<br>
  441. ! <br>
  442. ! * The image of the cathedral is 1.7 cm heigth and is located between the lens
  443. ! (from its vertex $`S2`$) and your eyes and at 2.5cm from the lens. If your eye is
  444. ! 20cm away from the lens, so the distance eye-image is 17.5 cm (we use no algebraic values).
  445. ! Thus the image of the catedral subtends the apparent angle
  446. ! $`\alpha'=arctan\left(\dfrac{1.7}{17.5}\right)=0.097\;rad=5.6°`$ at your eye.<br>
  447. ! <br>
  448. ! * The apparent magnification $`M_A`$ of the cathedral throught the lensball for my
  449. ! eye in that position is<br>
  450. ! $`M_A=\dfrac{\alpha'}{\alpha}=\dfrac{0.097}{0.221}=0.44`$.<br><br>
  451. ! Taking into account that the image is reversed, the algebraic value of the apparent
  452. ! magnification is $`\overline{M_A}=-0.44`$.<br>
  453. ! <br>
  454. ! * You could obtained directly this algebraic value of $`M_A`$ by considering algebraic
  455. ! lengthes and angles values in the calculations :<br><br>
  456. ! $`\overline{M_A}=\dfrac{\overline{\alpha'}}{\overline{\alpha}}`$
  457. ! $`=\dfrac {arctan\left(\frac{-0.017}{-0.175}\right)} {arctan\left(\frac{90}{-400}\right)}`$ $`=\dfrac{0.097}{-0.221}=-0.44`$
  458. !
  459. ! ![](lentille-boule-orleans-1bis.jpg)<br>
  460. ! _Cathedral of Orleans (France)_
  461. ! </details>
  462. ! </details>
  463. ! </details>
  464. ! </details>
  465. !! *BEYOND* : The gravitationnal lensball (or Einstein's ring), due to a black hole or a galaxy.
  466. !! Similarities, and differences.
  467. !!
  468. !! ![](Einstein-ring-free.jpg)
  469. !!
  470. !! <details markdown=1>
  471. !! <summary>
  472. !! To see
  473. !! </summary>
  474. !! still to be done, in progress.
  475. !! </details>