* [ES] Dos **vectores $`\vec{A}`$ et $`\vec{B}`$** son **colineales** si tienen *igual dirección*.<br>
* [ES] Dos **vectores $`\vec{A}`$ et $`\vec{B}`$** son **colineales** si tienen *igual dirección*.<br>
[FR] Deux *vecteurs $`\vec{A}`$ et $`\vec{B}`$* sont **colinéaires** s’ils ont la *même direction* :<br>
[FR] Deux *vecteurs $`\vec{A}`$ et $`\vec{B}`$* sont **colinéaires** s’ils ont la *même direction* :<br>
[EN] Two **vectors $`\vec{A}`$ et $`\vec{B}`$** are **collinear** if they lie on the *same line or parallel lines* :<br>
[EN] Two **vectors $`\vec{A}`$ et $`\vec{B}`$** are **collinear** if they lie on the *same line or parallel lines* :<br>
Il existe alors un nombre réel $`\alpha`$ tel que l’on peut écrire $`\overrightarrow{A}=\alpha\cdot\overrightarrow{B}`$<br>
<br>
<br>Il existe alors un nombre réel $`\alpha`$ tel que l’on peut écrire $`\overrightarrow{A}=\alpha\cdot\overrightarrow{B}`$<br>
" $`\vec{A}`$ et $`\vec{B}`$ sont colinéaires" $`\Longleftrightarrow \exists \alpha\in\mathbb{R}\quad\overrightarrow{A}=\alpha\cdot\overrightarrow{B}`$
" $`\vec{A}`$ et $`\vec{B}`$ sont colinéaires" $`\Longleftrightarrow \exists \alpha\in\mathbb{R}\quad\overrightarrow{A}=\alpha\cdot\overrightarrow{B}`$
[EN] Two vectors are collinear if they lie on the same line or parallel lines :<br>
* Deux **vecteurs $`\vec{A}`$ et $`\vec{B}`$** sont **non colinéaires** s’ils ont des *directions différentes*. Pour tout nombre réel $`\alpha`$ on peut écrire $`\overrightarrow{A}\ne\alpha\cdot\overrightarrow{B}`$.
* [ES] Dos **vectores $`\vec{A}`$ et $`\vec{B}`$** son **colineales** si non tienen *igual dirección*.<br>
[FR] Deux **vecteurs $`\vec{A}`$ et $`\vec{B}`$** sont **non colinéaires** s’ils ont des *directions différentes*.<br>
[EN] Two **vectors $`\vec{A}`$ et $`\vec{B}`$** are **non collinear** if they lie on *non parallel lines* :<br>
<br>
<br>Pour tout nombre réel $`\alpha`$ on peut écrire $`\overrightarrow{A}\ne\alpha\cdot\overrightarrow{B}`$.<br>
<br>"$`\vec{A}`$ et $`\vec{B}`$ sont non colinéaires" $`\Longleftrightarrow \forall\; \alpha\in\mathbb{R}`$$`\quad\overrightarrow{A}\ne\alpha\cdot\overrightarrow{B}`$
* "$`\vec{A}`$ et $`\vec{B}`$ sont non colinéaires" $`\Longleftrightarrow \forall\; \alpha\in\mathbb{R}`$$`\quad\overrightarrow{A}\ne\alpha\cdot\overrightarrow{B}`$
#### Base vectorial / Base vectorielle / Base of a vector space
#### Base vectorielle
##### Dans un plan $`\mathcal{P}`$
##### En un plano $`\mathcal{P}`$ / Dans un plan $`\mathcal{P}`$ / In a plane $`\mathcal{P}`$
* Définition :<br>
* Définition :<br>
**2 vecteurs $`\vec{a}`$ et $`\vec{b}`$ appartenant à un plan $`\mathcal{P}`$, non nuls, non colinéaires et ordonnés** dans une suite $`(\vec{a}\,,\,\vec{b})`$ forment une *base* $`(\vec{a}\,,\,\vec{b})`$ de ce plan.
**2 vecteurs $`\vec{a}`$ et $`\vec{b}`$ appartenant à un plan $`\mathcal{P}`$, non nuls, non colinéaires et ordonnés** dans une suite $`(\vec{a}\,,\,\vec{b})`$ forment une *base* $`(\vec{a}\,,\,\vec{b})`$ de ce plan.
@ -149,15 +150,16 @@ mais il y a **deux sens possibles** pour ce vecteur $`(\vec{c}`$.
---------
---------
#### Produit scalaire de 2 vecteurs / Norme d’un vecteur
#### Producto escalar de dos vectores, y norma de un vector / Produit scalaire de 2 vecteurs, et norme d’un vecteur /
##### Définition générale, valable dans une base quelconque
##### Définition générale, valable dans une base quelconque
##### Norme d’un vecteur unitaire
##### Vector unitario / Vecteur unitaire /
##### Produit scalaire de 2 vecteurs colinéaires
##### Producto escalar de dos vectores colineales / Produit scalaire de 2 vecteurs colinéaires /
##### Produit scalaire de 2 vecteurs orthogonaux
##### Producto escalar de dos vectores ortogonales /Produit scalaire de 2 vecteurs orthogonaux /
##### Caractéristiques des vecteurs de base d’une base orthonormée
##### Caractéristiques des vecteurs de base d’une base orthonormée