Browse Source

Update textbook.fr.md

keep-around/33d873866ad8cbe47f0266dd2b249f587be1d110
Claude Meny 5 years ago
parent
commit
33d873866a
  1. 12
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

12
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md

@ -419,17 +419,13 @@ $`\displaystyle\quad\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_
$`\left.\begin{array}{l}\overrightarrow{U}\cdot\overrightarrow{V}=||\overrightarrow{U}||\cdot||\overrightarrow{V}||\cdot $`\left.\begin{array}{l}\overrightarrow{U}\cdot\overrightarrow{V}=||\overrightarrow{U}||\cdot||\overrightarrow{V}||\cdot
cos (\widehat{\overrightarrow{U},\overrightarrow{V}}) \\ cos (\widehat{\overrightarrow{U},\overrightarrow{V}}) \\
\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + U_3\,V_3\end{array}\right|`$ \overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + U_3\,V_3\end{array}\right|`$
$`\quad\Longrightarrow`$
$`\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{\overrightarrow{U}\cdot\overrightarrow{V}}
$`\quad\Longrightarrow\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{\overrightarrow{U}\cdot\overrightarrow{V}}
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}`$ {||\overrightarrow{U}||\cdot||\overrightarrow{V}||}`$
$`\quad\Longrightarrow`$
$`\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3}
$`\quad\Longrightarrow\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3}
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}`$ {||\overrightarrow{U}||\cdot||\overrightarrow{V}||}`$
$`\quad\Longrightarrow`$
$`\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{\overrightarrow{U}\cdot\overrightarrow{V}}
$`\quad\Longrightarrow\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{\overrightarrow{U}\cdot\overrightarrow{V}}
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$ {||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$
$`\quad\Longrightarrow`$
$`\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3}
$`\quad\Longrightarrow\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3}
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$ {||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$
#### Produit vectoriel de 2 vecteurs #### Produit vectoriel de 2 vecteurs

Loading…
Cancel
Save