|
|
|
@ -419,17 +419,13 @@ $`\displaystyle\quad\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_ |
|
|
|
$`\left.\begin{array}{l}\overrightarrow{U}\cdot\overrightarrow{V}=||\overrightarrow{U}||\cdot||\overrightarrow{V}||\cdot |
|
|
|
cos (\widehat{\overrightarrow{U},\overrightarrow{V}}) \\ |
|
|
|
\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + U_3\,V_3\end{array}\right|`$ |
|
|
|
$`\quad\Longrightarrow`$ |
|
|
|
$`\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{\overrightarrow{U}\cdot\overrightarrow{V}} |
|
|
|
$`\quad\Longrightarrow\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{\overrightarrow{U}\cdot\overrightarrow{V}} |
|
|
|
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}`$ |
|
|
|
$`\quad\Longrightarrow`$ |
|
|
|
$`\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3} |
|
|
|
$`\quad\Longrightarrow\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3} |
|
|
|
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}`$ |
|
|
|
$`\quad\Longrightarrow`$ |
|
|
|
$`\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{\overrightarrow{U}\cdot\overrightarrow{V}} |
|
|
|
$`\quad\Longrightarrow\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{\overrightarrow{U}\cdot\overrightarrow{V}} |
|
|
|
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$ |
|
|
|
$`\quad\Longrightarrow`$ |
|
|
|
$`\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3} |
|
|
|
$`\quad\Longrightarrow\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3} |
|
|
|
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$ |
|
|
|
|
|
|
|
#### Produit vectoriel de 2 vecteurs |
|
|
|
|