Browse Source

Update textbook.fr.md

keep-around/3adeab8c5446b4065b46a0b7de07a4de9171591f
Claude Meny 5 years ago
parent
commit
3adeab8c54
  1. 4
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md

4
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md

@ -361,12 +361,12 @@ Stokes' theorem =
for all vectorial field $`\vec{X}`$, for all vectorial field $`\vec{X}`$,
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle $`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle
\oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$
\oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$
$`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{dl}= $`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{dl}=
\underset{S\,orient.}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$
\underset{S\leftrightarrow\Gamma}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$
$`\displaystyle\left. \dfrac{dQ}{dt}\right|_S =\oint_S \vec{j} \cdot \vec{dS}`$ $`\displaystyle\left. \dfrac{dQ}{dt}\right|_S =\oint_S \vec{j} \cdot \vec{dS}`$

Loading…
Cancel
Save