!!!! Document de travail destiné uniquement aux équipes pédagogiques.
! *Thème* :<br>
! *Electrostatique / Démonstration du théorème de Gauss, forme intégrale et forme locale*<br>
! Guide pour établir les 3 parties : main, overview, beyond<br>
!
! (_précède le thème : Electrostatique : Application du théorème de Gauss, forme intégrale et forme locale._)
ÉNONCÉS DU THÉORÈME DE GAUSS<br> ( appliqué à l' ÉLECTROSTATIQUE )
: ---
*Domaine de validité* :
Électrostatique et Électromagnétisme.
_Attention : Les expressions ci-dessous ne sont valables que dans le système international d'unité $`SI`$, anciennement $`MKS`$._
---
*FORME INTÉGRALE*
La flux du vecteur champ électrique $`\overrightarrow{E}`$ à travers toute surface fermée $`S`$ est égal à la charge électrique totale $`Q_{int}`$ (en valeur algébrique) située à l'intérieur de $`S`$ , multiplié par la constante électrique $`\epsilon_0`$ :
En tout point de l'espace, la divergence du champ électrique $`div\,\overrightarrow{E}`$ est égal à la densité volumique de chrage en ce point $`\rho`$ divisée par la constante électrique $`\epsilon_0`$ :
* En coordonnées cartésiennes, cylindriques ou sphérique, **chaque élément de surface fermée $`dS`$** dans le volume se décompose en *6 éléments de surface ouverte $`d\Sigma_i`$* : <br>
**$`\mathbf{dS=\sum_{i=1}^6 d\Sigma_i}`$**
* **A l'intérieur du volume $`\tau`$**, tout élément de surface ouverte $`d\Sigma_{int}`$ appartient à 2 élément de volume $`d\tau_1`$ et $`d\tau_2`$. Selon l'élément de volume considéré, un même élément de surface ouverte intérieure *$`\mathbf{d\Sigma_{int}}`$ est représenté par les vecteurs $`\overrightarrow{\Sigma}_{int,1}`$ ou $`\overrightarrow{\Sigma}_{int,2}`$* qui sont opposés :<br>
* $`\Longrightarrow`$ les flux élémentaires *$`\mathbf{d\Phi_{int,1}=\overrightarrow{X}\cdot \overrightarrow{d\Sigma}_{int,1}}`$* et *$`\mathbf{d\Phi_{int,2}=\overrightarrow{X}\cdot \overrightarrow{d\Sigma}_{int,2}}`$* correspondants <!--du champ $`\overrightarrow{X}`$ à travers un même élément de surface $`d\Sigma_i`$ considéré du point de vue des deux éléments de volume $`d\tau_1`$ et $`d\tau_2`$ auxquels il appartient--> sont opposés : <br>
* $`\Longrightarrow`$ le **flux** de $`\overrightarrow{X}`$ *à travers l'ensemble des $`\overrightarrow{d\Sigma_i}`$ situés* **à l'intérieur** d'un volume (les $`d\Sigma_i`$ appartenant à la frontière extérieure du volume étant exclus) est **nul**.
* Tout **élément de volume $`d\tau`$ en contact avec l'extérieur***possède un élément de surface $`d\Sigma_{ext}`$*. qui appartient à la frontière entre l'intérieur du volume et l'extérieur.
* L'ensemble des $`d\Sigma_{ext}`$ est la surface fermée $`S`$ délimitant le volume $`\tau`$ :<br>
$`S=\oiint `d\Sigma_{ext}`$
* $`\Longrightarrow`$ le **flux $`\mathbf{\Phi_{ext}}`$** de $`\overrightarrow{X}`$ à travers l'ensemble des $`\overrightarrow{d\Sigma_{ext}}`$ est le flux $`\mathbf{\Phi_X}`$ de $`\overrightarrow{X}`$ à travers la surface fermée $`S`$ délimitant le volume $`\tau`$ :<br>
* Tout élément de surface $`d\Sigma_{ext}`$ n'appartient qu'à un unique élement de volume $`d\tau`$ du volume $`\tau`$ :<br>
$`\Longrightarrow`$ lui est associé un **unique élément vectoriel de surface $`\overrightarrow{d\Sigma}_{ext}`$***orienté de l'intérieur vers l'extérieur*.
* $`\Longrightarrow`$ le *flux élémentaire correspondant $`d\Phi_{ext}=\overrightarrow{X}\cdot \overrightarrow{d\Sigma}_{ext}`$* <!--du champ $`\overrightarrow{X}`$ à travers un même élément de surface $`d\Sigma_i`$ considéré du seul point de vue de l'élément $`d\tau`$--> est en général non nul : <br>