|
|
@ -47,7 +47,7 @@ $`\def\PSclosed{\mathscr{S}_{\displaystyle\tiny\bigcirc}}`$ |
|
|
|
|
|
|
|
|
* * CS300 *: |
|
|
* * CS300 *: |
|
|
|
|
|
|
|
|
Reference frame: Cartesian coordinate system $ `(O, x, y, z)` $ |
|
|
|
|
|
|
|
|
Reference frame: Cartesian coordinate system $`(O, x, y, z)`$ |
|
|
\ - **1 point $`O`$ origin** of the space. <br> |
|
|
\ - **1 point $`O`$ origin** of the space. <br> |
|
|
\ - **3 axes** named **$`Ox,Oy,Oz`$**, intersecting at $`O`$, **orthogonal 2 to 2**. <br> |
|
|
\ - **3 axes** named **$`Ox,Oy,Oz`$**, intersecting at $`O`$, **orthogonal 2 to 2**. <br> |
|
|
\ - **1 unit of length**. <br> |
|
|
\ - **1 unit of length**. <br> |
|
|
@ -55,7 +55,7 @@ Reference frame: Cartesian coordinate system $ `(O, x, y, z)` $ |
|
|
! can give : |
|
|
! can give : |
|
|
|
|
|
|
|
|
The cylindrical coordinates are defined from a Cartesian coordinate system, i.e. |
|
|
The cylindrical coordinates are defined from a Cartesian coordinate system, i.e. |
|
|
\- 1 point $`O` origin of space. <br> |
|
|
|
|
|
|
|
|
\- 1 point $`O`$ origin of space. <br> |
|
|
\- 3 axes named $`Ox, Oy, Oz`$, intersecting at $`O`$, orthogonal 2 to 2. <br> |
|
|
\- 3 axes named $`Ox, Oy, Oz`$, intersecting at $`O`$, orthogonal 2 to 2. <br> |
|
|
\- 1 unit of length. <br> |
|
|
\- 1 unit of length. <br> |
|
|
|
|
|
|
|
|
@ -77,7 +77,7 @@ a *direct trihedron*.<br> |
|
|
\- The **coordinate $`z_M`$** of the point $`M`$ is the *algebraic distance $`\overline {Om_z}`$* |
|
|
\- The **coordinate $`z_M`$** of the point $`M`$ is the *algebraic distance $`\overline {Om_z}`$* |
|
|
between the point $`O`$ and the point $`m_z`$. |
|
|
between the point $`O`$ and the point $`m_z`$. |
|
|
|
|
|
|
|
|
**$`\rho_M=\overline{Om_ {xy}}`$, $`\varphi_M = \widehat{xOm_y}`, $`z_M =Om_z`$** |
|
|
|
|
|
|
|
|
**$`\rho_M=\overline{Om_ {xy}}`$, $`\varphi_M = \widehat{xOm_y}`$, $`z_M =Om_z`$** |
|
|
|
|
|
|
|
|
! can give : |
|
|
! can give : |
|
|
|
|
|
|
|
|
@ -85,7 +85,7 @@ The cylindrical coordinates are ordered and noted $`(\rho,\varphi,z)`$. |
|
|
|
|
|
|
|
|
For any point $`M`$ in space: |
|
|
For any point $`M`$ in space: |
|
|
|
|
|
|
|
|
\- The $`\ rho_M`$ coordinate of the point $`M`$ is the nonalgebraic distance $`Om_{xy}`$ |
|
|
|
|
|
|
|
|
\- The $`\rho_M`$ coordinate of the point $`M`$ is the nonalgebraic distance $`Om_{xy}`$ |
|
|
between point $`O`$ and point $ m_{xy}`$. <br> |
|
|
between point $`O`$ and point $ m_{xy}`$. <br> |
|
|
\- The coordinate $`\varphi_M`$ of the point $`M`$ is the nonalgebraic angle |
|
|
\- The coordinate $`\varphi_M`$ of the point $`M`$ is the nonalgebraic angle |
|
|
$`\widehat{xOm_{xy}}`$ between the axis $`Ox`$ and the half-line $`Om_ {xy}`$, |
|
|
$`\widehat{xOm_{xy}}`$ between the axis $`Ox`$ and the half-line $`Om_ {xy}`$, |
|
|
|