Browse Source

Update textbook.en.md

keep-around/7ca69c714dfbeafdbc07a5c0346f34ca4f4e3498
Claude Meny 5 years ago
parent
commit
7ca69c714d
  1. 8
      12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md

8
12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md

@ -47,7 +47,7 @@ $`\def\PSclosed{\mathscr{S}_{\displaystyle\tiny\bigcirc}}`$
* * CS300 *: * * CS300 *:
Reference frame: Cartesian coordinate system $ `(O, x, y, z)` $
Reference frame: Cartesian coordinate system $`(O, x, y, z)`$
\ - **1 point $`O`$ origin** of the space. <br> \ - **1 point $`O`$ origin** of the space. <br>
\ - **3 axes** named **$`Ox,Oy,Oz`$**, intersecting at $`O`$, **orthogonal 2 to 2**. <br> \ - **3 axes** named **$`Ox,Oy,Oz`$**, intersecting at $`O`$, **orthogonal 2 to 2**. <br>
\ - **1 unit of length**. <br> \ - **1 unit of length**. <br>
@ -55,7 +55,7 @@ Reference frame: Cartesian coordinate system $ `(O, x, y, z)` $
! can give : ! can give :
The cylindrical coordinates are defined from a Cartesian coordinate system, i.e. The cylindrical coordinates are defined from a Cartesian coordinate system, i.e.
\- 1 point $`O` origin of space. <br>
\- 1 point $`O`$ origin of space. <br>
\- 3 axes named $`Ox, Oy, Oz`$, intersecting at $`O`$, orthogonal 2 to 2. <br> \- 3 axes named $`Ox, Oy, Oz`$, intersecting at $`O`$, orthogonal 2 to 2. <br>
\- 1 unit of length. <br> \- 1 unit of length. <br>
@ -77,7 +77,7 @@ a *direct trihedron*.<br>
\- The **coordinate $`z_M`$** of the point $`M`$ is the *algebraic distance $`\overline {Om_z}`$* \- The **coordinate $`z_M`$** of the point $`M`$ is the *algebraic distance $`\overline {Om_z}`$*
between the point $`O`$ and the point $`m_z`$. between the point $`O`$ and the point $`m_z`$.
**$`\rho_M=\overline{Om_ {xy}}`$, $`\varphi_M = \widehat{xOm_y}`, $`z_M =Om_z`$**
**$`\rho_M=\overline{Om_ {xy}}`$, $`\varphi_M = \widehat{xOm_y}`$, $`z_M =Om_z`$**
! can give : ! can give :
@ -85,7 +85,7 @@ The cylindrical coordinates are ordered and noted $`(\rho,\varphi,z)`$.
For any point $`M`$ in space: For any point $`M`$ in space:
\- The $`\ rho_M`$ coordinate of the point $`M`$ is the nonalgebraic distance $`Om_{xy}`$
\- The $`\rho_M`$ coordinate of the point $`M`$ is the nonalgebraic distance $`Om_{xy}`$
between point $`O`$ and point $ m_{xy}`$. <br> between point $`O`$ and point $ m_{xy}`$. <br>
\- The coordinate $`\varphi_M`$ of the point $`M`$ is the nonalgebraic angle \- The coordinate $`\varphi_M`$ of the point $`M`$ is the nonalgebraic angle
$`\widehat{xOm_{xy}}`$ between the axis $`Ox`$ and the half-line $`Om_ {xy}`$, $`\widehat{xOm_{xy}}`$ between the axis $`Ox`$ and the half-line $`Om_ {xy}`$,

Loading…
Cancel
Save