|
|
|
@ -55,7 +55,7 @@ Reference frame: Cartesian coordinate system $ `(O, x, y, z)` $ |
|
|
|
! can give : |
|
|
|
|
|
|
|
The cylindrical coordinates are defined from a Cartesian coordinate system, i.e. |
|
|
|
\- 1 point $`O` origin of space. <br> |
|
|
|
\- 1 point $`O`$ origin of space. <br> |
|
|
|
\- 3 axes named $`Ox, Oy, Oz`$, intersecting at $`O`$, orthogonal 2 to 2. <br> |
|
|
|
\- 1 unit of length. <br> |
|
|
|
|
|
|
|
@ -77,7 +77,7 @@ a *direct trihedron*.<br> |
|
|
|
\- The **coordinate $`z_M`$** of the point $`M`$ is the *algebraic distance $`\overline {Om_z}`$* |
|
|
|
between the point $`O`$ and the point $`m_z`$. |
|
|
|
|
|
|
|
**$`\rho_M=\overline{Om_ {xy}}`$, $`\varphi_M = \widehat{xOm_y}`, $`z_M =Om_z`$** |
|
|
|
**$`\rho_M=\overline{Om_ {xy}}`$, $`\varphi_M = \widehat{xOm_y}`$, $`z_M =Om_z`$** |
|
|
|
|
|
|
|
! can give : |
|
|
|
|
|
|
|
|