|
|
|
@ -5,7 +5,7 @@ routable: false |
|
|
|
visible: false |
|
|
|
--- |
|
|
|
|
|
|
|
### Electromagnetismo / Electromagnétisme / Electromagnétism : 4 |
|
|
|
### Electromagnetismo niv.4 / Electromagnétisme niv.4/ Electromagnétism lev.4 |
|
|
|
|
|
|
|
|
|
|
|
!!!! *Recopilar elementos de cursos / Collecte d'éléments de cours / Collecting course items* |
|
|
|
@ -231,7 +231,7 @@ remember to replace (auto-tra) with your initials (YYY). |
|
|
|
|
|
|
|
### Ecuaciones de Maxwell / Equations de maxwell \ Maxwell's equations |
|
|
|
|
|
|
|
[ELECMAG4-10] Ecuaciones de Maxwell en forma integral / Equations de maxwell intégrales / ... |
|
|
|
#### Ecuaciones de Maxwell en forma integral / Equations de Maxwell intégrales / ... |
|
|
|
|
|
|
|
<!-- |
|
|
|
$`\displaystyle\oiint_S\overrightarrow{E}\cdot\overrightarrow{dS}=\dfrac{Q_{int}}{\epsilon_0}`$ |
|
|
|
@ -299,6 +299,7 @@ $`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrighta |
|
|
|
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS |
|
|
|
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ |
|
|
|
|
|
|
|
[FR](CME), [ES](...)?, [EN](...)? <br> |
|
|
|
$`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} |
|
|
|
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} |
|
|
|
= fem = \mathcal{C}_E`$ |
|
|
|
@ -308,19 +309,18 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot |
|
|
|
[EN](auto-trad) : <br> |
|
|
|
: |
|
|
|
|
|
|
|
[FR](CME) |
|
|
|
[FR](CME), [ES](...)?, [EN](...)? <br> |
|
|
|
$`fem = \mathcal{C}_E = \mathcal{E} |
|
|
|
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} |
|
|
|
= - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right) |
|
|
|
= - \dfrac{\partial \Phi_B}{\partial t}`$ |
|
|
|
|
|
|
|
[ES](auto-trad) :<br> |
|
|
|
[FR](CME) Théorème d'Ostrogradsky = théorème de la divergence : pour tout champ vectoriel $`\vec{X}`$ :<br> |
|
|
|
[EN](auto-trad) Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$ :<br> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$, $`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle |
|
|
|
[FR](CME), [ES](...)?, [EN](...)? <br> |
|
|
|
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle |
|
|
|
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ |
|
|
|
|
|
|
|
Stokes' theorem = |
|
|
|
|