|
|
|
@ -96,7 +96,7 @@ $`sin(\alpha) \approx tan (\alpha) \approx \alpha`$ (rad), et $`cos(\alpha) \ap |
|
|
|
$`\dfrac{1}{\overline{SA_{ima}}}+\dfrac{1}{\overline{SA_{obj}}}=\dfrac{2}{\overline{SC}}`$ (equ.1) |
|
|
|
|
|
|
|
* **Transverse magnification expression** :<br><br> |
|
|
|
$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$$ (equ.2) |
|
|
|
$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$ (equ.2) |
|
|
|
|
|
|
|
You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1) |
|
|
|
then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. |
|
|
|
@ -109,6 +109,18 @@ then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. |
|
|
|
! $`\overline{M_T}=+1`$. |
|
|
|
|
|
|
|
! *USEFUL 2° :<br> |
|
|
|
! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from |
|
|
|
! those of the spherical mirror**, with the following assumptions :<br><br> |
|
|
|
! $`n_{eme}=-n_{inc}`$<br><br> |
|
|
|
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction |
|
|
|
! of propagation reverses after reflection on the mirror)<br><br> |
|
|
|
! |
|
|
|
! are obtained by rewriting these two equations for a spherical refracting surface in the limit |
|
|
|
! when $`|\overline{SC}|\longrightarrow\infty`$. |
|
|
|
! Then we get for a plane mirror :<br> |
|
|
|
! $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and $`\overline{M_T}=+1`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|