Browse Source

Update textbook.fr.md

keep-around/9f05256dfd3cc94a9c36f5c5863bdb6a23201851
Claude Meny 5 years ago
parent
commit
9f05256dfd
  1. 7
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md

7
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md

@ -254,11 +254,12 @@ $`=dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z}`$<
[EN] y its norm (or length) is thescalar line element :<br> [EN] y its norm (or length) is thescalar line element :<br>
<br>$`||\overrightarrow{dl}||=\sqrt{dl_x^2+dl_y^2+dl_z^2}=\sqrt{dx^2+dy^2+dz^2}`$<br> <br>$`||\overrightarrow{dl}||=\sqrt{dl_x^2+dl_y^2+dl_z^2}=\sqrt{dx^2+dy^2+dz^2}`$<br>
<br>$`||\overrightarrow{dl}||=\sqrt{\overrightarrow{dl}\cdot\overrightarrow{dl}}`$ <br>$`||\overrightarrow{dl}||=\sqrt{\overrightarrow{dl}\cdot\overrightarrow{dl}}`$
$`=\sqrt{(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\cdot
(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})}`$
$`=\left[(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\cdot
(dl_x\;\overrightarrow{e_x}\rigth.`$
$`\left.+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\right]^{1/2}`$
$`=\left[(dl_x)^2\;(\overrightarrow{e_x}\cdot\overrightarrow{e_x})\right.`$ $`=\left[(dl_x)^2\;(\overrightarrow{e_x}\cdot\overrightarrow{e_x})\right.`$
$`+(dl_y)^2\;(\overrightarrow{e_y}\cdot\overrightarrow{e_y})`$ $`+(dl_y)^2\;(\overrightarrow{e_y}\cdot\overrightarrow{e_y})`$
$`+(dl_z)^2\;(\overrightarrow{e_z}\cdot\overrightarrow{e_z})}`$
$`+(dl_z)^2\;(\overrightarrow{e_z}\cdot\overrightarrow{e_z})`$
$`+(2\,dl_x\,dl_y)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_y})`$ $`+(2\,dl_x\,dl_y)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_y})`$
$`+(2\,dl_x\,dl_z)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_z})`$ $`+(2\,dl_x\,dl_z)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_z})`$
$`\left.+(2\,dl_y\,dl_z)\,(\overrightarrow{e_y}\cdot\overrightarrow{e_z})\right]^{1/2}`$ $`\left.+(2\,dl_y\,dl_z)\,(\overrightarrow{e_y}\cdot\overrightarrow{e_z})\right]^{1/2}`$

Loading…
Cancel
Save