|
|
@ -254,11 +254,12 @@ $`=dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z}`$< |
|
|
[EN] y its norm (or length) is thescalar line element :<br> |
|
|
[EN] y its norm (or length) is thescalar line element :<br> |
|
|
<br>$`||\overrightarrow{dl}||=\sqrt{dl_x^2+dl_y^2+dl_z^2}=\sqrt{dx^2+dy^2+dz^2}`$<br> |
|
|
<br>$`||\overrightarrow{dl}||=\sqrt{dl_x^2+dl_y^2+dl_z^2}=\sqrt{dx^2+dy^2+dz^2}`$<br> |
|
|
<br>$`||\overrightarrow{dl}||=\sqrt{\overrightarrow{dl}\cdot\overrightarrow{dl}}`$ |
|
|
<br>$`||\overrightarrow{dl}||=\sqrt{\overrightarrow{dl}\cdot\overrightarrow{dl}}`$ |
|
|
$`=\sqrt{(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\cdot |
|
|
|
|
|
(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})}`$ |
|
|
|
|
|
|
|
|
$`=\left[(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\cdot |
|
|
|
|
|
(dl_x\;\overrightarrow{e_x}\rigth.`$ |
|
|
|
|
|
$`\left.+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\right]^{1/2}`$ |
|
|
$`=\left[(dl_x)^2\;(\overrightarrow{e_x}\cdot\overrightarrow{e_x})\right.`$ |
|
|
$`=\left[(dl_x)^2\;(\overrightarrow{e_x}\cdot\overrightarrow{e_x})\right.`$ |
|
|
$`+(dl_y)^2\;(\overrightarrow{e_y}\cdot\overrightarrow{e_y})`$ |
|
|
$`+(dl_y)^2\;(\overrightarrow{e_y}\cdot\overrightarrow{e_y})`$ |
|
|
$`+(dl_z)^2\;(\overrightarrow{e_z}\cdot\overrightarrow{e_z})}`$ |
|
|
|
|
|
|
|
|
$`+(dl_z)^2\;(\overrightarrow{e_z}\cdot\overrightarrow{e_z})`$ |
|
|
$`+(2\,dl_x\,dl_y)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_y})`$ |
|
|
$`+(2\,dl_x\,dl_y)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_y})`$ |
|
|
$`+(2\,dl_x\,dl_z)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_z})`$ |
|
|
$`+(2\,dl_x\,dl_z)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_z})`$ |
|
|
$`\left.+(2\,dl_y\,dl_z)\,(\overrightarrow{e_y}\cdot\overrightarrow{e_z})\right]^{1/2}`$ |
|
|
$`\left.+(2\,dl_y\,dl_z)\,(\overrightarrow{e_y}\cdot\overrightarrow{e_z})\right]^{1/2}`$ |
|
|
|