- niveau 3 : calcul vectoriel dans un espace euclidien de dimension 2 ou 3,
en utilisant des bases cartésiennes, cylindriques et sphérique.
- niveau 4 : calcul vectoriel dans un espace pseudo-riemannien, en utilisant les bases naturelles
de systèmes de coordonnées quelconques.
-------------------------------------------->
### Géométries non euclidienne
@ -116,11 +123,19 @@ d'une variété de dimension $`n`$. Plusieurs systèmes peuvent être imaginés.
Il est toujours possible de changer de système de coordonnées pour repérer les points d'une variété.
Considérons deux systèmes de coordonnées $`x^i`$ et $`x'^i`$ d'une variété de dimension $`n`$.
Connaissant les coordonnées $`x^i`$ de tout point $`M`$, trouver les nouvelles coordonnées $`x'^i`$ du point $`M`$ necessite de connaître les $`n`$ fonctions $`x'_i=f_i(x_i)`$.
Par ailleurs, si les coordonnées $`x^i`$ vérifient une certaine équation $`g(x^i)=0`$, déterminer l'équation correspondante qui sera vérifiée par les nouvelles coordonnées $`x^i`$ nécessite de connaître les $`n`$ fonctions $`x_i=f'_i(x'_i)`$.
Connaissant les coordonnées $`x^i`$ de tout point $`M`$, trouver les nouvelles coordonnées $`x'^i`$
du point $`M`$ necessite de connaître les $`n`$ fonctions $`x'_i=f_i(x_i)`$.
$`\begin{matrix}
x'_1=f_1(x_1, x_2, ... , x_n) \\
x'_2=f_2(x_1, x_2, ... , x_n) \\
...
x'_n=f_n(x_1, x_2, ... , x_n)
\end`$
Par ailleurs, si les coordonnées $`x^i`$ vérifient une certaine équation $`g(x^i)=0`$, déterminer
l'équation correspondante qui sera vérifiée par les nouvelles coordonnées $`x^i`$ nécessite de connaître
les $`n`$ fonctions $`x_i=f'_i(x'_i)`$.
@ -128,9 +143,10 @@ Par ailleurs, si les coordonnées $`x^i`$ vérifient une certaine équation $`g(