|
|
@ -155,7 +155,7 @@ of the point M when only the coordinate x increases in an infinitesimal way) wri |
|
|
$`\partial\overrightarrow{OM}_y=\dfrac{\partial \overrightarrow{OM}}{\partial y}\cdot dy`$, |
|
|
$`\partial\overrightarrow{OM}_y=\dfrac{\partial \overrightarrow{OM}}{\partial y}\cdot dy`$, |
|
|
$`\quad\overrightarrow{e_y}=\dfrac{\partial\overrightarrow{OM}_y}{||\partial\overrightarrow{OM}_y||}`$<br> |
|
|
$`\quad\overrightarrow{e_y}=\dfrac{\partial\overrightarrow{OM}_y}{||\partial\overrightarrow{OM}_y||}`$<br> |
|
|
$`\partial\overrightarrow{OM}_z=\dfrac{\partial \overrightarrow{OM}}{\partial z}\cdot dz`$, |
|
|
$`\partial\overrightarrow{OM}_z=\dfrac{\partial \overrightarrow{OM}}{\partial z}\cdot dz`$, |
|
|
$`\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$ |
|
|
|
|
|
|
|
|
$`\quad\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$ |
|
|
|
|
|
|
|
|
* **N3 ($`\rightarrow`$ N4)**<br> |
|
|
* **N3 ($`\rightarrow`$ N4)**<br> |
|
|
[ES] Los vectores $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$ |
|
|
[ES] Los vectores $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$ |
|
|
@ -170,7 +170,10 @@ En coordonnées cartésiennes, les vecteurs de base gardent la |
|
|
[EN] The vectors $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$ |
|
|
[EN] The vectors $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$ |
|
|
form an **orthonormal basis** of space. It is the **base associated with Cartesian coordinates**. |
|
|
form an **orthonormal basis** of space. It is the **base associated with Cartesian coordinates**. |
|
|
In Cartesian coordinates, the base vectors keep the |
|
|
In Cartesian coordinates, the base vectors keep the |
|
|
**same direction whatever the position of the point $`M`$**. |
|
|
|
|
|
|
|
|
**same direction whatever the position of the point $`M`$**.<br> |
|
|
|
|
|
<br>$`(\overrightarrow{e_x},\overrightarrow{e_x},\overrightarrow{e_x})`$ |
|
|
|
|
|
base ortogonal independiente de la posición de $`M`$ / base orthogonale indépendante |
|
|
|
|
|
de la position de $`M`$ / orthogonal basis independent of the position of $`M`$. |
|
|
|
|
|
|
|
|
* **N3 ($`\rightarrow`$ N4)**<br> |
|
|
* **N3 ($`\rightarrow`$ N4)**<br> |
|
|
[ES] La norma del vector $`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`$ |
|
|
[ES] La norma del vector $`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`$ |
|
|
|