|
|
@ -28,7 +28,7 @@ cartésiennes $`(X_1, Y_1, Z_1)`$ et $`(X_2, Y_2, Z_2)`$ est donné par le théo |
|
|
|
|
|
|
|
|
$`d_{12}=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2}`$ |
|
|
$`d_{12}=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2}`$ |
|
|
|
|
|
|
|
|
$`d_{12}=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2}=\displaystyle\sqrt\sum_{i=1}^3(X_2^î-X_1î)^2`$ |
|
|
|
|
|
|
|
|
$`d_{12}=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2}=\displaystyle\sqrt{\sum_{i=1}^3(X_2^î-X_1î)^2}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|