Browse Source

Update textbook.fr.md

keep-around/c4b920267cd78bb8c8d58270c81b3e41f2357c70
Claude Meny 5 years ago
parent
commit
c4b920267c
  1. 18
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md

18
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md

@ -247,11 +247,23 @@ and it writes :<br>
<br>$`=\overrightarrow{MM'}=d\overrightarrow{OM}=\overrightarrow{dr}=\overrightarrow{dl}`$ <br>$`=\overrightarrow{MM'}=d\overrightarrow{OM}=\overrightarrow{dr}=\overrightarrow{dl}`$
$`=\partial\overrightarrow{OM}_x+\partial\overrightarrow{OM}_y+\partial\overrightarrow{OM}_z`$ $`=\partial\overrightarrow{OM}_x+\partial\overrightarrow{OM}_y+\partial\overrightarrow{OM}_z`$
$`=\overrightarrow{dl_x}+\overrightarrow{dl_y}+\overrightarrow{dl_z}`$ $`=\overrightarrow{dl_x}+\overrightarrow{dl_y}+\overrightarrow{dl_z}`$
$`=l_x\;\overrightarrow{e_x}+l_y\;\overrightarrow{e_y}+l_z\;\overrightarrow{e_z}`$<br>
[ES] y su norma es el elemento scalar de linea :<br>
$`=l_x\;\overrightarrow{e_x}+l_y\;\overrightarrow{e_y}+l_z\;\overrightarrow{e_z}`$
$`=dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z}`$<br>
<br>[ES] y su norma es el elemento scalar de linea :<br>
[FR] et sa norme el l'élément de longueur :<br> [FR] et sa norme el l'élément de longueur :<br>
[EN] y its norm (or length) is thescalar line element :<br> [EN] y its norm (or length) is thescalar line element :<br>
<br>||\overrightarrow{dl}||=\sqrt{dl_x^2+dl_y^2+dl_z^2}=\sqrt{dx^2+dy^2+dz^2}
<br>$`||\overrightarrow{dl}||=\sqrt{dl_x^2+dl_y^2+dl_z^2}=\sqrt{dx^2+dy^2+dz^2}`$<br>
<br>$`||\overrightarrow{dl}||=\sqrt{\overrightarrow{dl}\cdot\overrightarrow{dl}}`$
$`=\sqrt{(dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z})\cdot
(dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z})}`$
$`=\sqrt{dx^2\;(\overrightarrow{e_x}\cdot\overrightarrow{e_x})
+dy^2\;(\overrightarrow{e_y}\cdot\overrightarrow{e_y})
+dz^2\;(\overrightarrow{e_z}\cdot\overrightarrow{e_z})`$
$`+2\,dx\,dy\,x(\overrightarrow{e_x}\cdot\overrightarrow{e_y})`$
$`+2\,dx\,dz\,x(\overrightarrow{e_x}\cdot\overrightarrow{e_z})`$
$`+2\,dy\,dz\,x(\overrightarrow{e_y}\cdot\overrightarrow{e_z})}`$
$`=\sqrt{dl_x^2+dl_y^2+dl_z^2}`$
* **N3 ($`\rightarrow`$ N4)**<br> * **N3 ($`\rightarrow`$ N4)**<br>
[ES] Los 3 vectores $`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}\quad`$, [ES] Los 3 vectores $`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}\quad`$,

Loading…
Cancel
Save