|
|
|
@ -105,21 +105,55 @@ then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. |
|
|
|
! The conjunction equation and the transverse magnification equation for a plane mirror |
|
|
|
! are obtained by rewriting these two equations for a spherical mirror in the limit when |
|
|
|
! $`|\overline{SC}|\longrightarrow\infty`$. |
|
|
|
! Then we get for a plane mirror :$`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and |
|
|
|
! Then we get for a plane mirror : $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and |
|
|
|
! $`\overline{M_T}=+1`$. |
|
|
|
|
|
|
|
! *USEFUL 2° :<br> |
|
|
|
! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from |
|
|
|
! those of the spherical mirror**, with the following assumptions :<br><br> |
|
|
|
! $`n_{eme}=-n_{inc}`$<br><br> |
|
|
|
! those of the spherical mirror**, with the following assumptions :<br> |
|
|
|
! $`n_{eme}=-n_{inc}`$<br> |
|
|
|
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction |
|
|
|
! of propagation reverses after reflection on the mirror)<br><br> |
|
|
|
! |
|
|
|
! of propagation reverses after reflection on the mirror)<br> |
|
|
|
! are obtained by rewriting these two equations for a spherical refracting surface in the limit |
|
|
|
! when $`|\overline{SC}|\longrightarrow\infty`$. |
|
|
|
! Then we get for a plane mirror :<br> |
|
|
|
! $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and $`\overline{M_T}=+1`$ |
|
|
|
|
|
|
|
##### Graphical study |
|
|
|
|
|
|
|
*1 - Determining object and image focal points* |
|
|
|
|
|
|
|
Positions of object focal point F and image focal point F’ are easily obtained from the conjunction |
|
|
|
equation (equ. 1). |
|
|
|
|
|
|
|
* Image focal length $`\overline{OF'}`$ : $`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`$<br><br> |
|
|
|
(equ.1) $`\Longrightarrow\dfrac{1}{\overline{SF'}}=\dfrac{2}{\overline{SC}}\Longrightarrow\overline{SF'}=\dfrac{\overline{SC}}{2}`$ |
|
|
|
|
|
|
|
* Object focal length $`\overline{OF}`$ : $`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`$<br><br> |
|
|
|
(equ.2) $`\Longrightarrow\dfrac{1}{\overline{SF}}=\dfrac{2}{\overline{SC}}\Longrightarrow\overline{SF}=\dfrac{\overline{SC}}{2}`$ |
|
|
|
|
|
|
|
*2 - Thin spherical mirror representation* |
|
|
|
|
|
|
|
* **Optical axis = revolution axis** of the mirror, positively **oriented** in the direction of propagation of the incident light. |
|
|
|
|
|
|
|
* Thin spherical mirror equation :<br><br> |
|
|
|
\-**line segment**, perpendicular to the optical axis, centered on the axis with symbolic *indication of the |
|
|
|
direction of curvature* of the surface at its extremities, and *dark or hatched area on the non-reflective |
|
|
|
side* of the mirror.<br><br> |
|
|
|
\-**vertex S**, that locates the refracting surface on the optical axis;<br><br> |
|
|
|
\-**nodal point C = center of curvature**.<br><br> |
|
|
|
\-**object focal point F** and **image focal point F’**. |
|
|
|
|
|
|
|
##### Examples of graphical situations, with analytical results to train |
|
|
|
|
|
|
|
* with **real objects** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|