Browse Source

Update cheatsheet.en.md

keep-around/f0b55e147a080a4dfef3817942aaaabc37ac76a3
Claude Meny 6 years ago
parent
commit
f0b55e147a
  1. 44
      01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md

44
01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md

@ -105,21 +105,55 @@ then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$.
! The conjunction equation and the transverse magnification equation for a plane mirror
! are obtained by rewriting these two equations for a spherical mirror in the limit when
! $`|\overline{SC}|\longrightarrow\infty`$.
! Then we get for a plane mirror :$`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and
! Then we get for a plane mirror : $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and
! $`\overline{M_T}=+1`$.
! *USEFUL 2° :<br>
! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from
! those of the spherical mirror**, with the following assumptions :<br><br>
! $`n_{eme}=-n_{inc}`$<br><br>
! those of the spherical mirror**, with the following assumptions :<br>
! $`n_{eme}=-n_{inc}`$<br>
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction
! of propagation reverses after reflection on the mirror)<br><br>
!
! of propagation reverses after reflection on the mirror)<br>
! are obtained by rewriting these two equations for a spherical refracting surface in the limit
! when $`|\overline{SC}|\longrightarrow\infty`$.
! Then we get for a plane mirror :<br>
! $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and $`\overline{M_T}=+1`$
##### Graphical study
*1 - Determining object and image focal points*
Positions of object focal point F and image focal point F’ are easily obtained from the conjunction
equation (equ. 1).
* Image focal length $`\overline{OF'}`$ : $`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`$<br><br>
(equ.1) $`\Longrightarrow\dfrac{1}{\overline{SF'}}=\dfrac{2}{\overline{SC}}\Longrightarrow\overline{SF'}=\dfrac{\overline{SC}}{2}`$
* Object focal length $`\overline{OF}`$ : $`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`$<br><br>
(equ.2) $`\Longrightarrow\dfrac{1}{\overline{SF}}=\dfrac{2}{\overline{SC}}\Longrightarrow\overline{SF}=\dfrac{\overline{SC}}{2}`$
*2 - Thin spherical mirror representation*
* **Optical axis = revolution axis** of the mirror, positively **oriented** in the direction of propagation of the incident light.
* Thin spherical mirror equation :<br><br>
\-**line segment**, perpendicular to the optical axis, centered on the axis with symbolic *indication of the
direction of curvature* of the surface at its extremities, and *dark or hatched area on the non-reflective
side* of the mirror.<br><br>
\-**vertex S**, that locates the refracting surface on the optical axis;<br><br>
\-**nodal point C = center of curvature**.<br><br>
\-**object focal point F** and **image focal point F’**.
##### Examples of graphical situations, with analytical results to train
* with **real objects**

Loading…
Cancel
Save