[ES] (¡ auto-transl !) Así como el álgebra estudia las propiedades de las operaciones y ecuaciones realizadas con sus combinaciones, sin preocuparse por los valores de los números involucrados, <br>
[ES] (¡ auto-transl !)
Así como el álgebra estudia las propiedades de las operaciones y ecuaciones realizadas con sus combinaciones, sin preocuparse por los valores de los números involucrados, <br>
_ejemplo : el álgebra establece que $`a\times (b+c) = a\times b + a\times c`$_<br>
_ejemplo : el álgebra establece que $`a\times (b+c) = a\times b + a\times c`$_<br>
la **lógica** estudia las *propiedades de los operadores lógicos y equivalencias entre expresiones lógicas* realizadas con sus combinaciones, sin preocuparse por el significado de las aserciones involucradas.<br>
la **lógica** estudia las *propiedades de los operadores lógicos y equivalencias entre expresiones lógicas* realizadas con sus combinaciones, sin preocuparse por el significado de las aserciones involucradas.<br>
Los **operadores lógicos** son la *negación* ($`\neg`$), la *equivalencia* ($`\Longleftrightarrow`$), la *conjunción* ($`\land`$), la *disyunción* ($`\lor`$), la *implicación* ($`\Longrightarrow`$) y la *incompatibilidad* ($`|`$).<br>
Los **operadores lógicos** son la *negación* ($`\neg`$), la *equivalencia* ($`\Longleftrightarrow`$), la *conjunción* ($`\land`$), la *disyunción* ($`\lor`$), la *implicación* ($`\Longrightarrow`$) y la *incompatibilidad* ($`|`$).<br>
_ejemplo : la lógica establece que $`\neg(\,P \land Q\,) \Longleftrightarrow \neg P \lor \neg Q`$._
_ejemplo : la lógica establece que $`\neg(\,P \land Q\,) \Longleftrightarrow \neg P \lor \neg Q`$._
[FR] De même que l'algèbre étudie les propriétés des opérations et des équations réalisées avec leurs combinaisons, sans se soucier des valeurs des nombres mis en jeu,<br>
[FR]
De même que l'algèbre étudie les propriétés des opérations et des équations réalisées avec leurs combinaisons, sans se soucier des valeurs des nombres mis en jeu,<br>
_exemple : l'algèbre établit que $`a\times (b+c) = a\times b + a\times c`$_<br>
_exemple : l'algèbre établit que $`a\times (b+c) = a\times b + a\times c`$_<br>
la **logique** étudie les *propriétés des opérateurs logiques et des équivalences entre expressions logiques* réalisées avec leurs combinaisons, sans se soucier du sens des assertions mises en jeu,<br>
la **logique** étudie les *propriétés des opérateurs logiques et des équivalences entre expressions logiques* réalisées avec leurs combinaisons, sans se soucier du sens des assertions mises en jeu,<br>
Les **opérateurs logiques** sont la *négation* ($`\neg`$), l'*équivalence* ($`\Longleftrightarrow`$), la *conjonction* ($`\land`$),la *disjonction*($`\lor`$), l'*implication* ($`\Longrightarrow`$) et l'*incompatibilité* ($`|`$).<br>
Les **opérateurs logiques** sont la *négation* ($`\neg`$), l'*équivalence* ($`\Longleftrightarrow`$), la *conjonction* ($`\land`$),la *disjonction*($`\lor`$), l'*implication* ($`\Longrightarrow`$) et l'*incompatibilité* ($`|`$).<br>
_ejemplo : la lógica establece que $`\neg(\,P \land Q\,) \Longleftrightarrow \neg P \lor \neg Q`$._
_ejemplo : la lógica establece que $`\neg(\,P \land Q\,) \Longleftrightarrow \neg P \lor \neg Q`$._
[EN]
[EN]
...
-------------------------
-------------------------
*[Math-Logic-30] axiomas y teoremas / axiomes et théorèmes / axioms and theorems*
*[Math-Logic-30] axiomas y teoremas / axiomes et théorèmes / axioms and theorems*
[ES] (¡ auto-transl !) Un **axioma** es una *aserción* que se declara y se considera *verdadera, sin demonstración*. <br>
[ES] (¡ auto-transl !)
Un **axioma** es una *aserción* que se declara y se considera *verdadera, sin demonstración*. <br>
Un **teorema** es una *aserción* cuyo *valor verdadero se demuestra mediante un razonamiento lógico a partir de otras afirmaciones (axiomas o teoremas).
Un **teorema** es una *aserción* cuyo *valor verdadero se demuestra mediante un razonamiento lógico a partir de otras afirmaciones (axiomas o teoremas).
[FR] Un **axiome** est une *assertion* qui est posée et considérée comme *vraie, sans démonstration*.<br>
[FR]
Un **axiome** est une *assertion* qui est posée et considérée comme *vraie, sans démonstration*.<br>
Un **théorème** est une *assertion* dont *la valeur vraie est démontrée* par un raisonnement logique à partir d'autres assertions (axiomes ou théorèmes).
Un **théorème** est une *assertion* dont *la valeur vraie est démontrée* par un raisonnement logique à partir d'autres assertions (axiomes ou théorèmes).
[EN] (auto-transl !)
[EN] (auto-transl !)
...
--------------------------
--------------------------
@ -359,7 +394,7 @@ Un **théorème** est une *assertion* dont *la valeur vraie est démontrée* par