@ -746,18 +746,38 @@ $`=\dfrac{1}{\epsilon_0} \cdot \displaystyle\iiint_{\tau\leftrightarrow S} \rho
$`\displaystyle\oiint_S\overrightarrow{B}\cdot\overrightarrow{dS}=0`$
-->
------------------------
* **Ley de Gauss = teorema de Gauss** / Théorème de Gauss / Gauss' theorem
* **Ley de Gauss = teorema de Gauss / Théorème de Gauss / Gauss' theorem**
$`\displaystyle\iiint_{\tau} div\overrightarrow{E} \cdot d\tau= \displaystyle\iiint_{\tau}
\dfrac{\rho}{\epsilon_0} \cdot d\tau = \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho
\cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$
Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$, $`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{E} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS}` = \Phi_E`$
$`\Phi_E`$ : Flujo eléctrico /
$`\Phi_E = \displaystyle \oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS}
= \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho \cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$
--------------------
* **Ley de Faraday / Loi de Faraday**
$`\displaystyle\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS}
= -\displaystyle\iint_{S \leftrightarrow \tau} \dfrac{\partial \overrightarrow{B}}{\partial t}\cdot \overrightarrow{dS}`$
Mecánica newtoniana : espacio y el tiempo son desacoplados $`\Longrightarrow`$ orden de integración / derivación entre variables de espacio y tiempo no importa.
Mecánica newtoniana : espacio y el tiempo son desacoplados $`\Longrightarrow`$ orden de integración
/ derivación entre variables de espacio y tiempo no importa.< br >
Mécanique newtonienne : espace et temps sont découplés $`\Longrightarrow`$ l'ordre d'intégration / différenciation entre
variables d'espace et de temps n'importe pas.
$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrightarrow{dS}
= - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right)`$
@ -767,16 +787,19 @@ Stokes' theorem : for all vectorial field $`\vec{X}`$, $`\displaystyle\iint_{S\
$`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS}
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
= -\displaystyle\iint_{S \leftrightarrow \tau} \dfrac{\partial \overrightarrow{B}}{\partial t}\cdot \overrightarrow{dS}`$
= fem = \mathcal{C}_E`$
$`\mathcal{C}_E` = fem = \mathcal{E}`$ : circulación del campo eléctrico = *fuerza electromotriz = voltaje inducido*
$`fem = \mathcal{C}_E = \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}`$
Ostrogradsky’s theorem = divergence theorem (= Gauss's theorem) :
for all vectorial field $`\vec{X}`$,
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle
Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$, $`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
Stokes' theorem =