Browse Source

Update textbook.en.md

keep-around/6a1d2481c81e84b7a02dd37b81f381dd69610a2f
Claude Meny 6 years ago
parent
commit
6a1d2481c8
  1. 20
      10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

20
10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

@ -758,17 +758,33 @@ Mecánica newtoniana : espacio y el tiempo son desacoplados $`\Longrightarrow`$
$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrightarrow{dS} $`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrightarrow{dS}
= - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right)`$ = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right)`$
Stokes' theorem =
for all vectorial field $`\vec{X}`$,
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$
$`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS}
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
= -\displaystyle\iint_{S \leftrightarrow \tau} \dfrac{\partial \overrightarrow{B}}{\partial t}\cdot \overrightarrow{dS}`$
Ostrogradsky’s theorem = divergence theorem (= Gauss's theorem) : Ostrogradsky’s theorem = divergence theorem (= Gauss's theorem) :
for all vectorial field $`\vec{X}`$, for all vectorial field $`\vec{X}`$,
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle \oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
Stokes' theorem = Stokes' theorem =
for all vectorial field $`\vec{X}`$, for all vectorial field $`\vec{X}`$,
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle \oint_{\Gamma\,orient.\overrightarrow{S}} \overrightarrow{X}\cdot\overrightarrow{dl}`$
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle
\oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$

Loading…
Cancel
Save