Browse Source

Update textbook.es.md

keep-around/7788d1c3bd388840180114a67c9a61ab9fd98602
Claude Meny 5 years ago
parent
commit
7788d1c3bd
  1. 207
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/10.vector-analysis/textbook.es.md

207
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/10.vector-analysis/textbook.es.md

@ -91,12 +91,17 @@ https://en.wikipedia.org/wiki/ISO_31-11
##### VA10.Vectores en el espacio euclidiano / Vecteurs dans un espace euclidien / Vectors in Euclidean Space
[ES] 3 caracteristicas : norma, dirección y sentido ?
[FR] 3 caractéristiques : norme, direction et sens
[EN] 2 characteritics : magnitude (or length) and direction.
ATENCIÓN / ATTENTION / BE CAREFUL :
[ES] matemáticamente, la palabra "dirección / direction / direction" no tiene el mismo significado en francés y español, y en inglés.
[FR] mathématiquement, le mot dirección / direction / direction" n'a pas le même sens en français et espagnol, et en anglais.
[EN] mathematically, the word "dirección / direction / direction" does not have the same meaning in French and Spanish, and in English.
-------------------------------
@ -104,18 +109,22 @@ ATENCIÓN / ATTENTION / BE CAREFUL :
##### VA20 Significado de los vectores en mecánica / Signification des vecteurs en mécanique / Meaning of vectors in mechanics.
[ES] Los *vectores* pueden representar *diferentes cantidades físicas*. <br>
_ejemplo: vector de velocidad del punto M, y la fuerza que se aplica al punto M._<br>
_ejemplo: vector de velocidad del punto M, y la fuerza que se aplica al punto M._
[FR] Les *vecteurs* peuvent représenter des *grandeurs physiques différentes*.<br>
_exemple : vecteur vitesse du point M, et la force qui s’applique sur le point M._<br>
_exemple : vecteur vitesse du point M, et la force qui s’applique sur le point M._
[EN] The *vectors* can represent *different physical quantities*. <br>
_example: velocity vector of point M, and the force that applies to point M._
* [ES] Las *normas* de vectores correspondientes a diferentes cantidades físicas _(ejemplo:
[ES] Las *normas* de vectores correspondientes a diferentes cantidades físicas _(ejemplo:
velocidad y fuerza)_ se expresan en *diferentes unidades* _(respectivamente: $`ms^{-1}`$ y $`N`$)_.
Ellos *no se pueden comparar*.<br>
Ellos *no se pueden comparar*.
[FR] Les *normes* de vecteurs correspondant à des grandeurs physiques différentes _(exemple :
vitesse et force)_ s’expriment dans des **unités différentes** _(respectivement : $`m.s^{-1}`$
et $`N`$)_. Elles *ne peuvent pas être comparées*.<br>
et $`N`$)_. Elles *ne peuvent pas être comparées*.
[EN] The *magnitudes* of vectors corresponding to different physical quantities _(example: speed
and force)_ are expressed in *different units* _(respectively: $`ms^{-1}`$ and $`N`$)_.
They *cannot be compared*.
@ -124,16 +133,22 @@ They *cannot be compared*.
##### VA30 Vectores colineales y no colineales / Vecteurs colinéaires et non colinéaires / Collinear and non-collinear vectors
* [ES] Dos **vectores $`\vec{A}`$ et $`\vec{B}`$** son **colineales** si tienen *igual dirección*.<br>
[FR] Deux *vecteurs $`\vec{A}`$ et $`\vec{B}`$* sont **colinéaires** s’ils ont la *même direction* :<br>
[EN] Two **vectors $`\vec{A}`$ et $`\vec{B}`$** are **collinear** if they lie on the *same line or parallel lines* :<br>
[ES] Dos **vectores $`\vec{A}`$ et $`\vec{B}`$** son **colineales** si tienen *igual dirección*.
[FR] Deux *vecteurs $`\vec{A}`$ et $`\vec{B}`$* sont **colinéaires** s’ils ont la *même direction* :
[EN] Two **vectors $`\vec{A}`$ et $`\vec{B}`$** are **collinear** if they lie on the *same line or parallel lines* :
<br>Il existe alors un nombre réel $`\alpha`$ tel que l’on peut écrire $`\overrightarrow{A}=\alpha\cdot\overrightarrow{B}`$<br>
" $`\vec{A}`$ et $`\vec{B}`$ sont colinéaires" $`\Longleftrightarrow \exists \alpha\in\mathbb{R}\quad\overrightarrow{A}=\alpha\cdot\overrightarrow{B}`$
* [ES] Dos **vectores $`\vec{A}`$ et $`\vec{B}`$** son **colineales** si non tienen *igual dirección*.<br>
[FR] Deux **vecteurs $`\vec{A}`$ et $`\vec{B}`$** sont **non colinéaires** s’ils ont des *directions différentes*.<br>
[EN] Two **vectors $`\vec{A}`$ et $`\vec{B}`$** are **non collinear** if they lie on *non parallel lines* :<br>
[ES] Dos **vectores $`\vec{A}`$ et $`\vec{B}`$** son **colineales** si non tienen *igual dirección*.
[FR] Deux **vecteurs $`\vec{A}`$ et $`\vec{B}`$** sont **non colinéaires** s’ils ont des *directions différentes*.
[EN] Two **vectors $`\vec{A}`$ et $`\vec{B}`$** are **non collinear** if they lie on *non parallel lines* :
<br>Pour tout nombre réel $`\alpha`$ on peut écrire $`\overrightarrow{A} \ne \alpha\cdot\overrightarrow{B}`$.<br>
"$`\vec{A}`$ et $`\vec{B}`$ sont non colinéaires" $`\Longleftrightarrow \forall\; \alpha\in\mathbb{R}`$$`\quad\overrightarrow{A} \ne\alpha\cdot\overrightarrow{B}`$
@ -343,75 +358,95 @@ de la simplicité dans l'apprentissage des systèmes de coordonnées.
##### VA100 Base y ??? normales / Base et repère normés / Normal base and ????
* [ES] Base normée $`(\vec{a},\vec{b},\vec{c})`$<br>
[FR] Base normée $`(\vec{a},\vec{b},\vec{c})`$ et repère normé $`(O,\vec{a},\vec{b},\vec{c})`$<br>
[EN] Normal base $`(\vec{a},\vec{b},\vec{c})`$<br>
[ES] Base normée $`(\vec{a},\vec{b},\vec{c})`$
[FR] Base normée $`(\vec{a},\vec{b},\vec{c})`$ et repère normé $`(O,\vec{a},\vec{b},\vec{c})`$
[EN] Normal base $`(\vec{a},\vec{b},\vec{c})`$
[ES] Los vectores de una **base normal** son *vectores de norma uno* : vectores unitarios.
[FR] Les vecteurs d'une **base normée** et d'un repère normé sont des *vecteurs de norme unité* : vecteurs unitaires.
* [ES] Los vectores de una **base normal** son *vectores de norma uno* : vectores unitarios.<br>
[FR] Les vecteurs d'une **base normée** et d'un repère normé sont des *vecteurs de norme unité* : vecteurs unitaires.<br>
[EN] The vectors of a **normal base** ???? (I am not sure at all here...) are *vectors with a magnitude 1* (1 in the unit system).
* $`||\overrightarrow{a}||=1\; ; \;||\overrightarrow{b}||=1\; ; \;||\overrightarrow{c}||=1`$ .
$`||\overrightarrow{a}||=1\; ; \;||\overrightarrow{b}||=1\; ; \;||\overrightarrow{c}||=1`$ .
##### VA110 Base and ??? ortogonales / Base et repère orthogonaux / Orthogonal base and ???
* [ES] Base $`(\vec{a},\vec{b},\vec{c})`$ y ??? $`(O, \vec{a},\vec{b},\vec{c})`$ <br>
[FR] Base $`(\vec{a},\vec{b},\vec{c})`$ et repère $`(O, \vec{a},\vec{b},\vec{c})`$ <br>
[ES] Base $`(\vec{a},\vec{b},\vec{c})`$ y ??? $`(O, \vec{a},\vec{b},\vec{c})`$
[FR] Base $`(\vec{a},\vec{b},\vec{c})`$ et repère $`(O, \vec{a},\vec{b},\vec{c})`$
[EN] Base $`(\vec{a},\vec{b},\vec{c})`$ and ??? $`(O, \vec{a},\vec{b},\vec{c})`$
* [ES] Los vectores de una **base ortongonale** son *vectores perpendiculares dos a dos*.<br>
[FR] Les vecteurs d'une **base** ou d'un **repère orthogonal** sont des *vecteurs orthogonaux 2 à 2*.<br>
[ES] Los vectores de una **base ortongonale** son *vectores perpendiculares dos a dos*.
[FR] Les vecteurs d'une **base** ou d'un **repère orthogonal** sont des *vecteurs orthogonaux 2 à 2*.
[EN] The vectors of the **orthogonal base** are *orthogonal 2 to 2 vectors*
* $`\overrightarrow{a}\perp\overrightarrow{b}\; ; \;\overrightarrow{a}\perp\overrightarrow{c}\; ; \;\overrightarrow{b}\perp\overrightarrow{c}`$.
$`\overrightarrow{a}\perp\overrightarrow{b}\; ; \;\overrightarrow{a}\perp\overrightarrow{c}\; ; \;\overrightarrow{b}\perp\overrightarrow{c}`$.
##### VA120 Base y ??? ortonormales / base et repère orthonormés / ???
[ES] Base orthonormal $`(\vec{e_1},\vec{e_2},\vec{e_3})`$ / ??? $`(O,\vec{e_1},\vec{e_2},\vec{e_3})`$<br>
[ES] Base orthonormal $`(\vec{e_1},\vec{e_2},\vec{e_3})`$ / ??? $`(O,\vec{e_1},\vec{e_2},\vec{e_3})`$
[FR] Base orthonormée $`(\vec{e_1},\vec{e_2},\vec{e_3})`$ / repère orthonormé $`(O,\vec{e_1},\vec{e_2},\vec{e_3})`$
[EN] ??? $`(\vec{e_1},\vec{e_2},\vec{e_3})`$ / ??? $`(O,\vec{e_1},\vec{e_2},\vec{e_3})`$
* [ES]<br>
[ES]
[FR] orthonormé = **ortho**+*normé* :<br>
\- ortho : $`\forall (\vec{e_i},\vec{e_j}) \in \{\vec{e_1},\vec{e_2},\vec{e_3}\}^2 \quad \vec{e_i}\perp\vec{e_j}`$.<br>
\- normé : $`\forall \vec{e_i} \in \{\vec{e_1},\vec{e_2},\vec{e_3}\} \quad ||\vec{e_i}||=1`$.<br>
\- normé : $`\forall \vec{e_i} \in \{\vec{e_1},\vec{e_2},\vec{e_3}\} \quad ||\vec{e_i}||=1`$.
[EN]
* [ES]<br>
[ES]
[FR] orthonormé : $`\forall (\vec{e_i},\vec{e_j}) \in \{\vec{e_1},\vec{e_2},\vec{e_3}\}^2 \quad \overrightarrow{e_i}\cdot\overrightarrow{e_j}=\delta_{i\,j}`$<br>
avec le **symbole e Kronecker $`\delta_{i\,j}`$** défini par :<br>
$`\delta_{i\,j}=1`$ si $`i=j\quad`$ et $`\quad\delta_{i\,j}=0`$ si $`i \ne j`$.<br>
$`\delta_{i\,j}=1`$ si $`i=j\quad`$ et $`\quad\delta_{i\,j}=0`$ si $`i \ne j`$.
[EN]
#### VA130 Regla de la mano derecha / règle de la main droite / right-hand rule
* [ES] Dos vectores $`\vec{a}`$ y $`\vec{b}`$ distintos de cero, unitarios y ortogonales, forman
una base ortonormal $`(\vec{a},\vec{b})`$ de un plano en el espacio.<br>
[ES] Dos vectores $`\vec{a}`$ y $`\vec{b}`$ distintos de cero, unitarios y ortogonales, forman
una base ortonormal $`(\vec{a},\vec{b})`$ de un plano en el espacio.
[FR] ]Deux vecteurs $`\vec{a}`$ et $`\vec{b}`$ non nuls, unitaires et orthogonaux forment
une base orthonormée $`(\vec{a},\vec{b})`$ d'un plan dans l'espace.<br>
une base orthonormée $`(\vec{a},\vec{b})`$ d'un plan dans l'espace.
[FR]
* [ES] Esta base $`(\vec{a},\vec{b})`$ se puede completar con un tercer vector $`\ve{c}`$, unitario
[ES] Esta base $`(\vec{a},\vec{b})`$ se puede completar con un tercer vector $`\ve{c}`$, unitario
y perpendicular a $`\vec{a}`$ y a $`\vec{b}`$, para formar una base ortonormal
$`(\vec{a},\vec{b},\vec{c})`$ del espacio.<br>
$`(\vec{a},\vec{b},\vec{c})`$ del espacio.
[FR] Cette base $`(\vec{a},\vec{b})`$ peut être complétée par un troisième vecteur $`\vec{c}`$, unitaire
et perpendiculaire à $`\vec{a}`$ et à $`\vec{b}`$, pour former une base orthonormée
$`(\vec{a},\vec{b},\vec{c})`$ de l'espace.<br>
$`(\vec{a},\vec{b},\vec{c})`$ de l'espace.
[EN]
* [ES] Este tercer vector $`\vec{c}`$ perpendicular a los vectores $`\vec{a}`$ y
[ES] Este tercer vector $`\vec{c}`$ perpendicular a los vectores $`\vec{a}`$ y
$`\vec{b}`$ tiene **una dirección**, la
línea recta normal (perpendicular) al plano $`\mathcal{P}`$, pero hay **dos sentidos posibles**
para este vector $`\vec{c}`$.<br>
Estos dos posibles sentidos se distinguen por una *regla de orientación del espacío*: la
**regla de los 3 dedos de la mano derecha**.<br>
**regla de los 3 dedos de la mano derecha**.
[FR] Ce troisième vecteur $`\vec{c}`$ perpendiculaire à la fois aux vecteurs $`\vec{a}`$ et
$`\vec{b}`$ possède **une direction**, la *droite normale (perpendiculaire) au plan
$`\mathcal{P}`$, mais il y a **deux sens possibles** pour ce vecteur $`\vec{c}`$.<br>
Ces deux sens possibles sont distingués par une *règle d’orientation de l’espace* :
la **règle des 3 doigts de la main droite**.<br>
la **règle des 3 doigts de la main droite**.
[EN]
Fig "physics-mechanics-space-orientation-right-hand-rule-direction_L1200_horiz_vert.jpg" ready for use.
@ -501,9 +536,16 @@ $`\quad\Longrightarrow\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}}
**$`\quad\Longrightarrow\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3}
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$**
L'angle est donné en valeur non algébrique et exprimé en radian :
[ES] El ángulo se da en valor no algebraico y se expresa en radianes:
[FR] L'angle est donné en valeur non algébrique et exprimé en radian :
[ES] The angle is given in non-algebraic value and expressed in radians:
$`\widehat{\overrightarrow{U},\overrightarrow{V}}\in [0, \pi]\quad`$ (rad).
----------------------------
#### VA270 Producto vectorial de 2 vectores / Produit vectoriel de 2 vecteurs / Vector product of 2 vectors
Selon http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-36,
@ -511,10 +553,15 @@ il faudrait mieux utiliser en France la notation $`\vec{U}\times\vec{V}`$ plutô
que $`\vec{U}\land\vec{V}`$.
On le fait pour le cours en français, ou alors on garde notre notation en expliquant
notre différence avec la notation anglosaxonne ?
L'étudiant, dans le mode échange, verra le même cours en parallèle dans 2 langues, et donc verra
les différences d'écriture mathémétiques.
----------------------------
##### VA280 Representación en el espacio euclidiano / Représentation dans l'espace euclidien / Representation in Euclidean space.
* [ES] .<br>
[ES]
[FR] Le produit vectoriel de deux vecteurs $`\vec{U}`$ et $`\vec{V}`$ non nuls et non
colinéaires de l'espace, noté $`\vec{U}\land\vec{V}`$ est un vecteur $`\vec{W}`$ :<br>
\- de norme $`||\overrightarrow{W}||=||\overrightarrow{U}|\cdot||\overrightarrow{V}|\cdot sin(\widehat{\overrightarrow{U},\overrightarrow{V}})`$<br>
@ -523,24 +570,31 @@ colinéaires de l'espace, noté $`\vec{U}\land\vec{V}`$ est un vecteur $`\vec{W}
: $`\overrightarrow{W}\perp\overrightarrow{U}`$ et $`\overrightarrow{W}\perp\overrightarrow{V}`$<br>
\- de sens donné par la règle de la main droite : si le sens du premier vecteur $`\vec{U}`$
est indiqué par le pouce, le sens du deuxième vecteur $`\vec{V}`$ par l'index, alors le sens du
produit vectoriel $`\vec{W}=\vec{U}\land\vec{V}`$ est donné par le majeur.<br>
[EN] .
produit vectoriel $`\vec{W}=\vec{U}\land\vec{V}`$ est donné par le majeur.
[EN]
[ES]
* [ES] .<br>
[FR] La norme $`||\vec{U}\land\vec{V}||`$ du produit vectoriel de deux vecteurs $`\vec{U}`$ et $`\vec{V}`$ a pour valeur numérique
l'aire du parallélogramme engendré par les deux vecteurs $`\vec{U}`$ et $`\vec{V}`$.<br>
l'aire du parallélogramme engendré par les deux vecteurs $`\vec{U}`$ et $`\vec{V}`$.
[EN] .
* [ES] .<br>
[ES]
[FR] On note que, du fait de l'utilisation une fois (ou d'un nombre impair de fois) d'une (même) règle d'orientation
de l'espace dans sa définition, le produit vectoriel est anti-commutatif :<br>
$`\overrightarrow{U}\land\overrightarrow{V}=\,-\,\overrightarrow{V}\land\overrightarrow{U}`$.<br>
$`\overrightarrow{U}\land\overrightarrow{V}=\,-\,\overrightarrow{V}\land\overrightarrow{U}`$.
[EN]
* [ES] .<br>
[ES]
[FR] Le produit vectoriel est distributif par rapport à l'addition de deux vecteurs :<br>
$`\overrightarrow{U}\land\,(\overrightarrow{V}+\overrightarrow{W})=
\overrightarrow{U}\land\overrightarrow{V}+\overrightarrow{U}\land\overrightarrow{W}`$.<br>
\overrightarrow{U}\land\overrightarrow{V}+\overrightarrow{U}\land\overrightarrow{W}`$.
[EN]
<!--
@ -573,14 +627,17 @@ $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base orthonormée
$`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$
$`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{V}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$
* [FR] For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$,
[FR] For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$,
we shouldn't we use (http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04) : <br>
$`\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ or $`\overrightarrow{U}=\begin{bmatrix}U_1\\U_2\\U_3\end{bmatrix}`$
instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ?
* [ES] <br>
[FR] méthode des produits en croix :<br>
[EN] <br>
[ES] ...
[FR] méthode des produits en croix :
[EN] ...
$`\forall\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$
$`\quad\forall\overrightarrow{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$
$`\quad\vec{U}\land\vec{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}\land\begin{pmatrix}V_1\\V_2\\V_3\end{pmatrix}`$
@ -589,8 +646,10 @@ $`=U_1V_2\,\overrightarrow{e_3}+U_2V_3\,\overrightarrow{e_1}+U_3V_1\,\overrighta
$`-\,U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$
* [ES] <br>
[FR] <br>
[ES]
[FR]
[EN] method similar to the sum used to obtain the determinant of a matrix :<br>
<br>$`\vec{U}\land\vec{V}=\begin{vmatrix} \overrightarrow{e_1}&\overrightarrow{e_2}&\overrightarrow{e_3}\\
U_1 & U_2 & U_3\\V_1 & V_2 & V_3\end{vmatrix}`$
@ -600,21 +659,28 @@ $`-\,U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrigh
#### VA310 Producto mixto de 2 vectores / Produit mixte de 3 vecteurs / Scalar triple product of 3 vectors
* [ES] Producto triple escala = producto mixto.<br>
[FR] Produit mixte.<br>
[ES] Producto triple escala = producto mixto.
[FR] Produit mixte.
[EN] Scalar triple product = triple product.
* [ES] :<br>
[ES] :
[FR] Le produit mixte de 3 vecteurs ordonnés $`\vec{U}`$, $`\vec{V}`$ et $`\vec{W}`$,
noté $`(\vec{U},\vec{V},\vec{W})`$ est le scalaire (pseudo-scalaire) défini par :<br>
[EN] :<br>
[EN] :
$`(\overrightarrow{U},\overrightarrow{V},\overrightarrow{W})=\overrightarrow{U}\cdot (\overrightarrow{V}\land\overrightarrow{W})`$
* Propiedades / Prppriétés / Properties :<br>
<br> $`(\overrightarrow{U},\overrightarrow{V},\overrightarrow{W})
Propiedades / Prppriétés / Properties :
$`(\overrightarrow{U},\overrightarrow{V},\overrightarrow{W})
=(\overrightarrow{V},\overrightarrow{W},\overrightarrow{U})
=(\overrightarrow{W},\overrightarrow{U},\overrightarrow{V})`$<br>
<br> $`(\overrightarrow{U},\overrightarrow{V},\overrightarrow{W})
=(\overrightarrow{W},\overrightarrow{U},\overrightarrow{V})`$
$`(\overrightarrow{U},\overrightarrow{V},\overrightarrow{W})
=-\,(\overrightarrow{V},\overrightarrow{U},\overrightarrow{W})
=-(\overrightarrow{U},\overrightarrow{W},\overrightarrow{V})
=-(\overrightarrow{W},\overrightarrow{V},\overrightarrow{U})`$
@ -625,26 +691,33 @@ $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base orthonormée
$`\displaystyle\quad\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$
$`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{V}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$
$`\displaystyle\quad\forall \overrightarrow{W}\in\mathcal{P}\quad \overrightarrow{W}=\sum_{i=1}^n\;VW_i\cdot\vec{e_i}`$
* [ES] :<br>
[ES] :
[FR] Le produit mixte $`(\vec{U},\vec{V},\vec{W})`$ se calcule comme le déterminant
de la matrice formée par les coordonnées ordonnées en ligne des trois vecteurs
$`\vec{U}`$, $`\vec{V}`$ et $`\vec{W}`$ ordonnés en colonne :<br>
[EN] :<br>
<br>$`(\vec{U},\vec{V},\vec{W})=\begin{vmatrix} U_1 & U_2 & U_3\\
$`\vec{U}`$, $`\vec{V}`$ et $`\vec{W}`$ ordonnés en colonne :
[EN] :
$`(\vec{U},\vec{V},\vec{W})=\begin{vmatrix} U_1 & U_2 & U_3\\
V_1 & V_2 & V_3\\W_1 & W_2 & W_3\end{vmatrix}`$
$`=U_3 V_1 W_2 + U_1 V_2 W_3 + U_2 V_3 W_1 - U_2 V_1 W_3 - U_3 V_2 W_1 - U_1 V_3 W_2`$
##### VA310-2 Representación en el espacio euclidiano / Représentation dans l'espace euclidien / Representation in Euclidean space.
[ES] <br>
[ES]
[FR] Le module du produit mixte de trois vecteurs $`(\vec{U},\vec{V},\vec{W})`$
donne le volume du parallélépipède construit à partir des trois vecteurs appliqués en un même point de l'espace.<br>
donne le volume du parallélépipède construit à partir des trois vecteurs appliqués en un même point de l'espace.
[EN]
<!--
Figure à créer.
<!--------------------
#### Différentielle d'un vecteur
Por INSA / pour l'INSA / for INSA :

Loading…
Cancel
Save