Browse Source

Update textbook.en.md

keep-around/b198b2fef13c5b914810587426d06ff8179201b0
Claude Meny 6 years ago
parent
commit
b198b2fef1
  1. 18
      10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

18
10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

@ -226,15 +226,23 @@ FR : en coordonnées cartésiennes orthonormées : <br>
EN : in orthonormal Cartesian coordinate : <br> EN : in orthonormal Cartesian coordinate : <br>
$`\Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$ $`\Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$
$`\Delta = \overrightarrow{grad}\left( div\,\overrightarrow{U}\right) - \overrightarrow{rot}\left(\overrightarrow{rot}\,\overrightarrow{U}\right)`$ <br>
$`\Delta = \overrightarrow{grad}\:div\,\overrightarrow{U} - \overrightarrow{rot}\:\overrightarrow{rot}\,\overrightarrow{U}`$ <br>
$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\left( div\,\overrightarrow{U}\right) - \overrightarrow{rot}\left(\overrightarrow{rot}\,\overrightarrow{U}\right)`$ <br>
$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\:div\,\overrightarrow{U} - \overrightarrow{rot}\:\overrightarrow{rot}\,\overrightarrow{U}`$ <br>
ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial <br> ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial <br>
FR : opérateur laplacien, laplacien, d'un champ scalaire ou d'un champ vecoriel <br> FR : opérateur laplacien, laplacien, d'un champ scalaire ou d'un champ vecoriel <br>
EN : laplacian operator, vectorial laplacian, laplacian of a vector field
in orthonormal Cartesian coordinate :
EN : laplacian operator, vectorial laplacian, laplacian of a vector field <br>
in orthonormal Cartesian coordinate : <br>
$`\Delta\;\overrightarrow{U} = \overrightarrow{e_x}\left(\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2}\right) $`\Delta\;\overrightarrow{U} = \overrightarrow{e_x}\left(\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2}\right)
+\overrightarrow{e_y}\left(\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2}\right) +\overrightarrow{e_y}\left(\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2}\right)
+\overrightarrow{e_z}\left(\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2}\right)`$
+\overrightarrow{e_z}\left(\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2}\right)`$ <br>
$`\Delta\;\overrightarrow{U} = \left \{
\begin{array}{r c l}
\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2} \\
\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2} \\
\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2}
\end{array}
\right.
ES : escalar = número real o complexo + unidad de medida? <br> ES : escalar = número real o complexo + unidad de medida? <br>
FR : scalaire = nombre réel ou complexe + unité de mesure <br> FR : scalaire = nombre réel ou complexe + unité de mesure <br>

Loading…
Cancel
Save