|
|
|
@ -226,15 +226,23 @@ FR : en coordonnées cartésiennes orthonormées : <br> |
|
|
|
EN : in orthonormal Cartesian coordinate : <br> |
|
|
|
$`\Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$ |
|
|
|
|
|
|
|
$`\Delta = \overrightarrow{grad}\left( div\,\overrightarrow{U}\right) - \overrightarrow{rot}\left(\overrightarrow{rot}\,\overrightarrow{U}\right)`$ <br> |
|
|
|
$`\Delta = \overrightarrow{grad}\:div\,\overrightarrow{U} - \overrightarrow{rot}\:\overrightarrow{rot}\,\overrightarrow{U}`$ <br> |
|
|
|
$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\left( div\,\overrightarrow{U}\right) - \overrightarrow{rot}\left(\overrightarrow{rot}\,\overrightarrow{U}\right)`$ <br> |
|
|
|
$`\Delta\;\overrightarrow{U} = \overrightarrow{grad}\:div\,\overrightarrow{U} - \overrightarrow{rot}\:\overrightarrow{rot}\,\overrightarrow{U}`$ <br> |
|
|
|
ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial <br> |
|
|
|
FR : opérateur laplacien, laplacien, d'un champ scalaire ou d'un champ vecoriel <br> |
|
|
|
EN : laplacian operator, vectorial laplacian, laplacian of a vector field |
|
|
|
in orthonormal Cartesian coordinate : |
|
|
|
EN : laplacian operator, vectorial laplacian, laplacian of a vector field <br> |
|
|
|
in orthonormal Cartesian coordinate : <br> |
|
|
|
$`\Delta\;\overrightarrow{U} = \overrightarrow{e_x}\left(\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2}\right) |
|
|
|
+\overrightarrow{e_y}\left(\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2}\right) |
|
|
|
+\overrightarrow{e_z}\left(\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2}\right)`$ |
|
|
|
+\overrightarrow{e_z}\left(\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2}\right)`$ <br> |
|
|
|
$`\Delta\;\overrightarrow{U} = \left \{ |
|
|
|
\begin{array}{r c l} |
|
|
|
\dfrac{\partial^2\;U_x}{\partial x^2}+\dfrac{\partial^2\;U_x}{\partial y^2}+\dfrac{\partial^2\;U_x}{\partial z^2} \\ |
|
|
|
\dfrac{\partial^2\;U_y}{\partial x^2}+\dfrac{\partial^2\;U_y}{\partial y^2}+\dfrac{\partial^2\;U_y}{\partial z^2} \\ |
|
|
|
\dfrac{\partial^2\;U_z}{\partial x^2}+\dfrac{\partial^2\;U_z}{\partial y^2}+\dfrac{\partial^2\;U_z}{\partial z^2} |
|
|
|
\end{array} |
|
|
|
\right. |
|
|
|
|
|
|
|
|
|
|
|
ES : escalar = número real o complexo + unidad de medida? <br> |
|
|
|
FR : scalaire = nombre réel ou complexe + unité de mesure <br> |
|
|
|
|